Medial Code Documentation
|
Public Member Functions | |
__init__ (self, data, label=None, reference=None, weight=None, group=None, init_score=None, silent=False, feature_name='auto', categorical_feature='auto', params=None, free_raw_data=True) | |
__del__ (self) | |
construct (self) | |
create_valid (self, data, label=None, weight=None, group=None, init_score=None, silent=False, params=None) | |
subset (self, used_indices, params=None) | |
save_binary (self, filename) | |
set_field (self, field_name, data) | |
get_field (self, field_name) | |
set_categorical_feature (self, categorical_feature) | |
set_reference (self, reference) | |
set_feature_name (self, feature_name) | |
set_label (self, label) | |
set_weight (self, weight) | |
set_init_score (self, init_score) | |
set_group (self, group) | |
get_label (self) | |
get_weight (self) | |
get_init_score (self) | |
get_data (self) | |
get_group (self) | |
num_data (self) | |
num_feature (self) | |
get_ref_chain (self, ref_limit=100) | |
Protected Member Functions | |
_free_handle (self) | |
_lazy_init (self, data, label=None, reference=None, weight=None, group=None, init_score=None, predictor=None, silent=False, feature_name='auto', categorical_feature='auto', params=None) | |
_update_params (self, params) | |
_reverse_update_params (self) | |
_set_predictor (self, predictor) | |
Protected Attributes | |
_predictor | |
Dataset in LightGBM.
lightgbm.basic.Dataset.__init__ | ( | self, | |
data, | |||
label = None , |
|||
reference = None , |
|||
weight = None , |
|||
group = None , |
|||
init_score = None , |
|||
silent = False , |
|||
feature_name = 'auto' , |
|||
categorical_feature = 'auto' , |
|||
params = None , |
|||
free_raw_data = True |
|||
) |
Initialize Dataset. Parameters ---------- data : string, numpy array, pandas DataFrame, H2O DataTable, scipy.sparse or list of numpy arrays Data source of Dataset. If string, it represents the path to txt file. label : list, numpy 1-D array, pandas Series / one-column DataFrame or None, optional (default=None) Label of the data. reference : Dataset or None, optional (default=None) If this is Dataset for validation, training data should be used as reference. weight : list, numpy 1-D array, pandas Series or None, optional (default=None) Weight for each instance. group : list, numpy 1-D array, pandas Series or None, optional (default=None) Group/query size for Dataset. init_score : list, numpy 1-D array, pandas Series or None, optional (default=None) Init score for Dataset. silent : bool, optional (default=False) Whether to print messages during construction. feature_name : list of strings or 'auto', optional (default="auto") Feature names. If 'auto' and data is pandas DataFrame, data columns names are used. categorical_feature : list of strings or int, or 'auto', optional (default="auto") Categorical features. If list of int, interpreted as indices. If list of strings, interpreted as feature names (need to specify ``feature_name`` as well). If 'auto' and data is pandas DataFrame, pandas categorical columns are used. All values in categorical features should be less than int32 max value (2147483647). Large values could be memory consuming. Consider using consecutive integers starting from zero. All negative values in categorical features will be treated as missing values. params : dict or None, optional (default=None) Other parameters for Dataset. free_raw_data : bool, optional (default=True) If True, raw data is freed after constructing inner Dataset.
|
protected |
Set predictor for continued training. It is not recommended for user to call this function. Please use init_model argument in engine.train() or engine.cv() instead.
lightgbm.basic.Dataset.construct | ( | self | ) |
Lazy init. Returns ------- self : Dataset Constructed Dataset object.
lightgbm.basic.Dataset.create_valid | ( | self, | |
data, | |||
label = None , |
|||
weight = None , |
|||
group = None , |
|||
init_score = None , |
|||
silent = False , |
|||
params = None |
|||
) |
Create validation data align with current Dataset. Parameters ---------- data : string, numpy array, pandas DataFrame, H2O DataTable, scipy.sparse or list of numpy arrays Data source of Dataset. If string, it represents the path to txt file. label : list, numpy 1-D array, pandas Series / one-column DataFrame or None, optional (default=None) Label of the data. weight : list, numpy 1-D array, pandas Series or None, optional (default=None) Weight for each instance. group : list, numpy 1-D array, pandas Series or None, optional (default=None) Group/query size for Dataset. init_score : list, numpy 1-D array, pandas Series or None, optional (default=None) Init score for Dataset. silent : bool, optional (default=False) Whether to print messages during construction. params : dict or None, optional (default=None) Other parameters for validation Dataset. Returns ------- valid : Dataset Validation Dataset with reference to self.
lightgbm.basic.Dataset.get_data | ( | self | ) |
Get the raw data of the Dataset. Returns ------- data : string, numpy array, pandas DataFrame, H2O DataTable, scipy.sparse, list of numpy arrays or None Raw data used in the Dataset construction.
lightgbm.basic.Dataset.get_field | ( | self, | |
field_name | |||
) |
Get property from the Dataset. Parameters ---------- field_name : string The field name of the information. Returns ------- info : numpy array A numpy array with information from the Dataset.
lightgbm.basic.Dataset.get_group | ( | self | ) |
Get the group of the Dataset. Returns ------- group : numpy array or None Group size of each group.
lightgbm.basic.Dataset.get_init_score | ( | self | ) |
Get the initial score of the Dataset. Returns ------- init_score : numpy array or None Init score of Booster.
lightgbm.basic.Dataset.get_label | ( | self | ) |
Get the label of the Dataset. Returns ------- label : numpy array or None The label information from the Dataset.
lightgbm.basic.Dataset.get_ref_chain | ( | self, | |
ref_limit = 100 |
|||
) |
Get a chain of Dataset objects. Starts with r, then goes to r.reference (if exists), then to r.reference.reference, etc. until we hit ``ref_limit`` or a reference loop. Parameters ---------- ref_limit : int, optional (default=100) The limit number of references. Returns ------- ref_chain : set of Dataset Chain of references of the Datasets.
lightgbm.basic.Dataset.get_weight | ( | self | ) |
Get the weight of the Dataset. Returns ------- weight : numpy array or None Weight for each data point from the Dataset.
lightgbm.basic.Dataset.num_data | ( | self | ) |
Get the number of rows in the Dataset. Returns ------- number_of_rows : int The number of rows in the Dataset.
lightgbm.basic.Dataset.num_feature | ( | self | ) |
Get the number of columns (features) in the Dataset. Returns ------- number_of_columns : int The number of columns (features) in the Dataset.
lightgbm.basic.Dataset.save_binary | ( | self, | |
filename | |||
) |
Save Dataset to a binary file. Parameters ---------- filename : string Name of the output file. Returns ------- self : Dataset Returns self.
lightgbm.basic.Dataset.set_categorical_feature | ( | self, | |
categorical_feature | |||
) |
Set categorical features. Parameters ---------- categorical_feature : list of int or strings Names or indices of categorical features. Returns ------- self : Dataset Dataset with set categorical features.
lightgbm.basic.Dataset.set_feature_name | ( | self, | |
feature_name | |||
) |
Set feature name. Parameters ---------- feature_name : list of strings Feature names. Returns ------- self : Dataset Dataset with set feature name.
lightgbm.basic.Dataset.set_field | ( | self, | |
field_name, | |||
data | |||
) |
Set property into the Dataset. Parameters ---------- field_name : string The field name of the information. data : list, numpy 1-D array, pandas Series or None The array of data to be set. Returns ------- self : Dataset Dataset with set property.
lightgbm.basic.Dataset.set_group | ( | self, | |
group | |||
) |
Set group size of Dataset (used for ranking). Parameters ---------- group : list, numpy 1-D array, pandas Series or None Group size of each group. Returns ------- self : Dataset Dataset with set group.
lightgbm.basic.Dataset.set_init_score | ( | self, | |
init_score | |||
) |
Set init score of Booster to start from. Parameters ---------- init_score : list, numpy 1-D array, pandas Series or None Init score for Booster. Returns ------- self : Dataset Dataset with set init score.
lightgbm.basic.Dataset.set_label | ( | self, | |
label | |||
) |
Set label of Dataset. Parameters ---------- label : list, numpy 1-D array, pandas Series / one-column DataFrame or None The label information to be set into Dataset. Returns ------- self : Dataset Dataset with set label.
lightgbm.basic.Dataset.set_reference | ( | self, | |
reference | |||
) |
Set reference Dataset. Parameters ---------- reference : Dataset Reference that is used as a template to construct the current Dataset. Returns ------- self : Dataset Dataset with set reference.
lightgbm.basic.Dataset.set_weight | ( | self, | |
weight | |||
) |
Set weight of each instance. Parameters ---------- weight : list, numpy 1-D array, pandas Series or None Weight to be set for each data point. Returns ------- self : Dataset Dataset with set weight.
lightgbm.basic.Dataset.subset | ( | self, | |
used_indices, | |||
params = None |
|||
) |
Get subset of current Dataset. Parameters ---------- used_indices : list of int Indices used to create the subset. params : dict or None, optional (default=None) These parameters will be passed to Dataset constructor. Returns ------- subset : Dataset Subset of the current Dataset.