Medial Code Documentation
Loading...
Searching...
No Matches
Public Member Functions | Static Public Member Functions | Data Fields
TQRF_Forest Class Reference
Inheritance diagram for TQRF_Forest:
SerializableObject

Public Member Functions

int init (map< string, string > &map)
 Virtual to init object from parsed fields.
 
int init_from_string (string init_string)
 
void init_tables (Quantized_Feat &qfeat)
 
int Train (const MedFeatures &medf, const MedMat< float > &Y)
 The basic train matrix for TQRF is MedFeatures (!!) the reason is that it contains everything in one place: that is: the X features, the Y outcome, the weights and the samples for each row.
 
int Train (const MedFeatures &medf)
 
int Train_AdaBoost (const MedFeatures &medf, const MedMat< float > &Y)
 
int update_counts (vector< vector< float > > &sample_counts, MedMat< float > &x, Quantized_Feat &qf, int zero_counts, int round)
 
int tune_betas (Quantized_Feat &qfeat)
 tuning : solving a gd problem of finding the optimal betas for nodes at some certain chosen depth in the trees on a kept-a-side set of samples.
 
int solve_betas_gd (MedMat< float > &C, MedMat< float > &S, vector< float > &b)
 
int Predict (MedMat< float > &x, vector< float > &preds) const
 However - the basic predict for this model is MedMat !! , as here it is much simpler : we only need to find the terminal nodes in the trees and calculate our scores.
 
int n_preds_per_sample () const
 
int Predict_Categorial (MedMat< float > &x, vector< float > &preds) const
 
void print_average_bagging (int _n_time_slices, int _n_categ)
 
- Public Member Functions inherited from SerializableObject
virtual int version () const
 Relevant for serializations.
 
virtual string my_class_name () const
 For better handling of serializations it is highly recommended that each SerializableObject inheriting class will implement the next method.
 
virtual void serialized_fields_name (vector< string > &field_names) const
 The names of the serialized fields.
 
virtual void * new_polymorphic (string derived_name)
 for polymorphic classes that want to be able to serialize/deserialize a pointer * to the derived class given its type one needs to implement this function to return a new to the derived class given its type (as in my_type)
 
virtual void pre_serialization ()
 
virtual void post_deserialization ()
 
virtual size_t get_size ()
 Gets bytes sizes for serializations.
 
virtual size_t serialize (unsigned char *blob)
 Serialiazing object to blob memory. return number ob bytes wrote to memory.
 
virtual size_t deserialize (unsigned char *blob)
 Deserialiazing blob to object. returns number of bytes read.
 
size_t serialize_vec (vector< unsigned char > &blob)
 
size_t deserialize_vec (vector< unsigned char > &blob)
 
virtual size_t serialize (vector< unsigned char > &blob)
 
virtual size_t deserialize (vector< unsigned char > &blob)
 
virtual int read_from_file (const string &fname)
 read and deserialize model
 
virtual int write_to_file (const string &fname)
 serialize model and write to file
 
virtual int read_from_file_unsafe (const string &fname)
 read and deserialize model without checking version number - unsafe read
 
int init_from_string (string init_string)
 Init from string.
 
int init_params_from_file (string init_file)
 
int init_param_from_file (string file_str, string &param)
 
int update_from_string (const string &init_string)
 
virtual int update (map< string, string > &map)
 Virtual to update object from parsed fields.
 
virtual string object_json () const
 

Static Public Member Functions

static int get_tree_type (const string &str)
 
static int get_missing_value_method (const string &str)
 

Data Fields

TQRF_Params params
 
vector< TQRF_Treetrees
 
vector< float > alphas
 
vector< float > betas
 

Member Function Documentation

◆ init()

int TQRF_Forest::init ( map< string, string > &  map)
inlinevirtual

Virtual to init object from parsed fields.

Reimplemented from SerializableObject.

◆ Train()

int TQRF_Forest::Train ( const MedFeatures medf,
const MedMat< float > &  Y 
)

The basic train matrix for TQRF is MedFeatures (!!) the reason is that it contains everything in one place: that is: the X features, the Y outcome, the weights and the samples for each row.

All of these are needed when calculating a logrank score for example The y matrix is added since we may want to use regression with y values given for every time slice ...


The documentation for this class was generated from the following files: