13 SGD(
PredictiveModel *mdl,
double(*loss_funct)(
const vector<double> &got,
const vector<float> &y,
const vector<float> *weights));
14 void Learn(
const vector<vector<float>> &xData,
const vector<float> &yData,
int T_Steps,
const vector<float> *weights = NULL,
bool print_auc =
false);
16 double(*subGradientI)(
int param_number,
const vector<double> ¶m_values,
const vector<vector<float>> &x,
const vector<float> &y,
const vector<float> *weights);
17 void set_gradient_params(
int samplePointCnt,
float h,
int minSampForCat = 0);
20 void set_learing_rate(
float val);
21 void set_learing(
float blockVals,
float blockDerivate,
int T_steps);
22 void set_special_step_func(
double(*function)(
const vector<double> &,
const vector<float> &,
const vector<double> &,
const vector<float> *));
25 void set_blocking(
float val);
28 void set_model_precision(
double val);
29 double get_model_precision();
31 float get_learing_rate();
32 float get_learing_eppsilon(
float blockVals,
float blockDerivate,
int T_steps);
40 vector<PredictiveModel *> _models_par;
41 double(*loss_function)(
const vector<double> &got,
const vector<float> &y,
const vector<float> *weights);
42 double(*step_loss_function)(
const vector<double> &got,
const vector<float> &y,
const vector<double> &model_params,
const vector<float> *weights);
44 bool has_learing_rate;
46 double _min_precision;
47 map<float, vector<int>> _categoryIndex;
56 vector<float> _sampleY;
57 vector<float> _sampleW;
58 vector<vector<float>> _sampleX;
59 vector<double> _preds_plus;
60 vector<double> _preds_minus;
61 vector<double> _preds_base;
63 vector<double> _step(
const vector<vector<float>> &xData,
const vector<float> &yData,
const vector<float> *weights);
64 void _projection_step(vector<double> ¶ms);
65 void _round_step(vector<double> ¶ms);