Medial Code Documentation
Loading...
Searching...
No Matches
Public Member Functions | Data Fields
MedMicNet Class Reference
Inheritance diagram for MedMicNet:
MedPredictor SerializableObject

Public Member Functions

 MedMicNet (void *params)
 
 MedMicNet (MedMicNetParams &params)
 
int init (void *params)
 
int init_from_string (string initialization_text)
 The parsed fields from init command.
 
int init (map< string, string > &mapper)
 MedMicNet:: init map :: not supported, only init_from_string supported.
 
int set_params (map< string, string > &mapper)
 
void init_defaults ()
 
int Learn (float *x, float *y, const float *w, int nsamples, int nftrs)
 Learn should be implemented for each model.
 
int Predict (float *x, float *&preds, int nsamples, int nftrs) const
 Predict should be implemented for each model.
 
int learn (MedMat< float > &x, MedMat< float > &y, vector< float > &wgt)
 
int learn (MedMat< float > &x, MedMat< float > &y)
 
int predict (MedMat< float > &x, vector< float > &preds) const
 
void prepare_predict_single ()
 
void predict_single (const vector< float > &x, vector< float > &preds) const
 
int n_preds_per_sample () const
 Number of predictions per sample. typically 1 - but some models return several per sample (for example a probability vector)
 
- Public Member Functions inherited from MedPredictor
int init_from_string (string initialization_text)
 
virtual void print (FILE *fp, const string &prefix, int level=0) const
 
virtual int denormalize_model (float *f_avg, float *f_std, float label_avg, float label_std)
 
int learn (float *x, float *y, int nsamples, int nftrs)
 simple no weights call
 
virtual int learn (MedMat< float > &x, MedMat< float > &y, const vector< float > &wgts)
 MedMat x,y : will transpose/normalize x,y if needed by algorithm The convention is that untransposed mats are always samples x features, and transposed are features x samples.
 
int learn (MedMat< float > &x, MedMat< float > &y)
 MedMat x,y : will transpose/normalize x,y if needed by algorithm The convention is that untransposed mats are always samples x features, and transposed are features x samples.
 
int learn (MedMat< float > &x, vector< float > &y, const vector< float > &wgts)
 MedMat x, vector y: will transpose normalize x if needed (y assumed to be normalized)
 
int learn (MedMat< float > &x, vector< float > &y)
 MedMat x, vector y: will transpose normalize x if needed (y assumed to be normalized)
 
int learn (vector< float > &x, vector< float > &y, const vector< float > &wgts, int n_samples, int n_ftrs)
 vector x,y: transpose/normalizations not done.
 
int learn (vector< float > &x, vector< float > &y, int n_samples, int n_ftrs)
 vector x,y: transpose/normalizations not done.
 
int predict (vector< float > &x, vector< float > &preds, int n_samples, int n_ftrs) const
 
int threaded_predict (MedMat< float > &x, vector< float > &preds, int nthreads) const
 
int learn (const MedFeatures &features)
 
int learn (const MedFeatures &features, vector< string > &names)
 
virtual int predict (MedFeatures &features) const
 
virtual void calc_feature_importance (vector< float > &features_importance_scores, const string &general_params)
 Feature Importance - assume called after learn.
 
virtual void calc_feature_importance (vector< float > &features_importance_scores, const string &general_params, const MedFeatures *features)
 
virtual void calc_feature_contribs (MedMat< float > &x, MedMat< float > &contribs)
 Feature contributions explains the prediction on each sample (aka BUT_WHY)
 
virtual void calc_feature_contribs_conditional (MedMat< float > &mat_x_in, unordered_map< string, float > &contiditional_variables, MedMat< float > &mat_x_out, MedMat< float > &mat_contribs)
 
virtual void export_predictor (const string &output_fname)
 
int learn_prob_calibration (MedMat< float > &x, vector< float > &y, vector< float > &min_range, vector< float > &max_range, vector< float > &map_prob, int min_bucket_size=10000, float min_score_jump=0.001, float min_prob_jump=0.005, bool fix_prob_order=false)
 calibration for probability using training data
 
int convert_scores_to_prob (const vector< float > &preds, const vector< float > &min_range, const vector< float > &max_range, const vector< float > &map_prob, vector< float > &probs) const
 If you have ran learn_prob_calibration before, you have min_range,max_range,map_prob from This function - that is used to convert preds to probs.
 
int learn_prob_calibration (MedMat< float > &x, vector< float > &y, int poly_rank, vector< double > &params, int min_bucket_size=10000, float min_score_jump=0.001)
 Will create probability bins using Platt scale method.
 
template<class T , class L >
int convert_scores_to_prob (const vector< T > &preds, const vector< double > &params, vector< L > &converted) const
 Converts probability from Platt scale model.
 
virtual bool predict_single_not_implemented ()
 Prepartion function for fast prediction on single item each time.
 
virtual void predict_single (const vector< double > &x, vector< double > &preds) const
 
virtual void calc_feature_importance_shap (vector< float > &features_importance_scores, string &importance_type, const MedFeatures *features)
 
void * new_polymorphic (string derived_class_name)
 for polymorphic classes that want to be able to serialize/deserialize a pointer * to the derived class given its type one needs to implement this function to return a new to the derived class given its type (as in my_type)
 
size_t get_predictor_size ()
 
size_t predictor_serialize (unsigned char *blob)
 
- Public Member Functions inherited from SerializableObject
virtual int version () const
 Relevant for serializations.
 
virtual string my_class_name () const
 For better handling of serializations it is highly recommended that each SerializableObject inheriting class will implement the next method.
 
virtual void serialized_fields_name (vector< string > &field_names) const
 The names of the serialized fields.
 
virtual void pre_serialization ()
 
virtual void post_deserialization ()
 
virtual size_t get_size ()
 Gets bytes sizes for serializations.
 
virtual size_t serialize (unsigned char *blob)
 Serialiazing object to blob memory. return number ob bytes wrote to memory.
 
virtual size_t deserialize (unsigned char *blob)
 Deserialiazing blob to object. returns number of bytes read.
 
size_t serialize_vec (vector< unsigned char > &blob)
 
size_t deserialize_vec (vector< unsigned char > &blob)
 
virtual size_t serialize (vector< unsigned char > &blob)
 
virtual size_t deserialize (vector< unsigned char > &blob)
 
virtual int read_from_file (const string &fname)
 read and deserialize model
 
virtual int write_to_file (const string &fname)
 serialize model and write to file
 
virtual int read_from_file_unsafe (const string &fname)
 read and deserialize model without checking version number - unsafe read
 
int init_from_string (string init_string)
 Init from string.
 
int init_params_from_file (string init_file)
 
int init_param_from_file (string file_str, string &param)
 
int update_from_string (const string &init_string)
 
virtual int update (map< string, string > &map)
 Virtual to update object from parsed fields.
 
virtual string object_json () const
 

Data Fields

micNet mic
 
MedMicNetParams mic_params
 Parameters.
 
- Data Fields inherited from MedPredictor
MedPredictorTypes classifier_type
 The Predicotr enum type.
 
bool transpose_for_learn
 True if need to transpose before learn.
 
bool normalize_for_learn
 True if need to normalize before learn.
 
bool normalize_y_for_learn
 True if need to normalize labels before learn.
 
bool transpose_for_predict
 True if need to transpose before predict.
 
bool normalize_for_predict
 True if need to normalize before predict.
 
vector< string > model_features
 The model features used in Learn, to validate when caling predict.
 
int features_count = 0
 The model features count used in Learn, to validate when caling predict.
 

Additional Inherited Members

- Static Public Member Functions inherited from MedPredictor
static MedPredictormake_predictor (string model_type)
 
static MedPredictormake_predictor (MedPredictorTypes model_type)
 
static MedPredictormake_predictor (string model_type, string params)
 
static MedPredictormake_predictor (MedPredictorTypes model_type, string params)
 
- Protected Member Functions inherited from MedPredictor
void prepare_x_mat (MedMat< float > &x, const vector< float > &wgts, int &nsamples, int &nftrs, bool transpose_needed) const
 
void predict_thread (void *p) const
 

Member Function Documentation

◆ init() [1/2]

int MedMicNet::init ( map< string, string > &  mapper)
inlinevirtual

MedMicNet:: init map :: not supported, only init_from_string supported.

Reimplemented from MedPredictor.

◆ init() [2/2]

int MedMicNet::init ( void *  params)
inlinevirtual

Reimplemented from MedPredictor.

◆ init_defaults()

void MedMicNet::init_defaults ( )
inlinevirtual

Reimplemented from MedPredictor.

◆ init_from_string()

int MedMicNet::init_from_string ( string  initialization_text)
inline

The parsed fields from init command.

if (fields[i] == "A") def_A = stof(fields[++i]);
if (fields[i] == "B") def_B = stof(fields[++i]);
if (fields[i] == "lambda") def_lambda = stof(fields[++i]);
if (fields[i] == "momentum") def_momentum = stof(fields[++i]);
if (fields[i] == "batch_size") batch_size = stoi(fields[++i]);
if (fields[i] == "max_norm") max_wgt_norm = stof(fields[++i]);
if (fields[i] == "min_norm") min_wgt_norm = stof(fields[++i]);
if (fields[i] == "wgt_std") weights_init_std = stof(fields[++i]);
if (fields[i] == "rate_decay") rate_decay = stof(fields[++i]);
if (fields[i] == "n_categ") n_categ = stoi(fields[++i]);
if (fields[i] == "n_per_categ") n_per_categ = stoi(fields[++i]);
if (fields[i] == "nfeat") nfeat = stoi(fields[++i]);
if (fields[i] == "n_norm") n_norm_layers = stoi(fields[++i]);
if (fields[i] == "norm_facor") normalization_factor = stof(fields[++i]);
if (fields[i] == "sparse") sparse_zero_prob = stof(fields[++i]);
if (fields[i] == "loss_type") loss_type = fields[++i];
if (fields[i] == "net_type") net_type = fields[++i];
if (fields[i] == "min_epochs") min_epochs = stoi(fields[++i]);
if (fields[i] == "max_epochs") max_epochs = stoi(fields[++i]);
if (fields[i] == "n_back") n_back = stoi(fields[++i]);
if (fields[i] == "min_improve") min_improve_n_back = stof(fields[++i]);
if (fields[i] == "n_preds_per_sample") n_preds_per_sample = stoi(fields[++i]);
if (fields[i] == "pred_class") pred_class = stoi(fields[++i]);
if (fields[i] == "last_layer") last_layer_to_keep = stoi(fields[++i]);
//if (fields[i] == "learning_rate") def_learning_rate = stof(fields[++i]);
learning_rates.resize(500, def_learning_rate);
if (fields[i] == "learning_rate") {
string s = fields[++i];
vector<string> f;
boost::split(f, s, boost::is_any_of("-/#"));
int k = 0;
for (int j = 0; j < f.size(); j++)
learning_rates[k++] = stof(f[j]);
if (k > 0) {
for (int j = k; j < learning_rates.size(); j++)
learning_rates[j] = learning_rates[k - 1];
}
}
if (fields[i] == "hidden") {
string s = fields[++i];
vector<string> f;
boost::split(f, s, boost::is_any_of("-/#"));
for (int j = 0; j < f.size(); j++)
n_hidden.push_back(stoi(f[j]));
}
if (fields[i] == "dropout") {
string s = fields[++i];
vector<string> f;
boost::split(f, s, boost::is_any_of("-/#"));
for (int j = 0; j < f.size(); j++)
dropout_in_probs.push_back(stof(f[j]));
}
if (fields[i] == "samp_ratio") {
string s = fields[++i];
vector<string> f;
boost::split(f, s, boost::is_any_of("-/#"));
for (int j = 0; j < f.size(); j++)
samp_ratio.push_back(stof(f[j]));
}
int n_preds_per_sample() const
Number of predictions per sample. typically 1 - but some models return several per sample (for exampl...
Definition MedMicNet.h:77
float stof(const std::string &value, size_t *pos=nullptr)
A faster implementation of stof(). See documentation of std::stof() for more information....
Definition strtonum.h:467

◆ Learn()

int MedMicNet::Learn ( float *  x,
float *  y,
const float *  w,
int  n_samples,
int  n_ftrs 
)
inlinevirtual

Learn should be implemented for each model.

This API always assumes the data is already normalized/transposed as needed, and never changes data in x,y,w. method should support calling with w=NULL.

Reimplemented from MedPredictor.

◆ n_preds_per_sample()

int MedMicNet::n_preds_per_sample ( ) const
inlinevirtual

Number of predictions per sample. typically 1 - but some models return several per sample (for example a probability vector)

Reimplemented from MedPredictor.

◆ Predict()

int MedMicNet::Predict ( float *  x,
float *&  preds,
int  n_samples,
int  n_ftrs 
) const
inlinevirtual

Predict should be implemented for each model.

This API assumes x is normalized/transposed if needed. preds should either be pre-allocated or NULL - in which case the predictor should allocate it to the right size.

Reimplemented from MedPredictor.

◆ predict()

int MedMicNet::predict ( MedMat< float > &  x,
vector< float > &  preds 
) const
inlinevirtual

Reimplemented from MedPredictor.

◆ predict_single()

void MedMicNet::predict_single ( const vector< float > &  x,
vector< float > &  preds 
) const
virtual

Reimplemented from MedPredictor.

◆ prepare_predict_single()

void MedMicNet::prepare_predict_single ( )
virtual

Reimplemented from MedPredictor.

◆ set_params()

int MedMicNet::set_params ( map< string, string > &  mapper)
inlinevirtual

Reimplemented from MedPredictor.


The documentation for this class was generated from the following files: