Medial Code Documentation
Loading...
Searching...
No Matches
Public Member Functions | Data Fields
MedDeepBit Class Reference
Inheritance diagram for MedDeepBit:
MedPredictor SerializableObject

Public Member Functions

void init_defaults ()
 
int init (void *classifier_params)
 
int set_params (map< string, string > &initialization_map)
 The parsed fields from init command.
 
 MedDeepBit (void *_params)
 
 MedDeepBit (MedDeepBitParams &_params)
 
int Learn (float *x, float *y, const float *w, int nsamples, int nftrs)
 Learn should be implemented for each model.
 
int Learn (float *x, float *y, int nsamples, int nftrs)
 
int Predict (float *x, float *&preds, int nsamples, int nftrs) const
 Predict should be implemented for each model.
 
virtual void print (FILE *fp, const string &prefix, int level=0) const
 
size_t get_size ()
 Gets bytes sizes for serializations.
 
size_t serialize (unsigned char *blob)
 Serialiazing object to blob memory. return number ob bytes wrote to memory.
 
size_t deserialize (unsigned char *blob)
 Deserialiazing blob to object. returns number of bytes read.
 
void print_model (FILE *fp, const string &prefix) const
 
- Public Member Functions inherited from MedPredictor
int init_from_string (string initialization_text)
 
virtual int init (map< string, string > &mapper)
 Virtual to init object from parsed fields.
 
virtual int n_preds_per_sample () const
 Number of predictions per sample. typically 1 - but some models return several per sample (for example a probability vector)
 
virtual int denormalize_model (float *f_avg, float *f_std, float label_avg, float label_std)
 
int learn (float *x, float *y, int nsamples, int nftrs)
 simple no weights call
 
virtual int learn (MedMat< float > &x, MedMat< float > &y, const vector< float > &wgts)
 MedMat x,y : will transpose/normalize x,y if needed by algorithm The convention is that untransposed mats are always samples x features, and transposed are features x samples.
 
int learn (MedMat< float > &x, MedMat< float > &y)
 MedMat x,y : will transpose/normalize x,y if needed by algorithm The convention is that untransposed mats are always samples x features, and transposed are features x samples.
 
int learn (MedMat< float > &x, vector< float > &y, const vector< float > &wgts)
 MedMat x, vector y: will transpose normalize x if needed (y assumed to be normalized)
 
int learn (MedMat< float > &x, vector< float > &y)
 MedMat x, vector y: will transpose normalize x if needed (y assumed to be normalized)
 
int learn (vector< float > &x, vector< float > &y, const vector< float > &wgts, int n_samples, int n_ftrs)
 vector x,y: transpose/normalizations not done.
 
int learn (vector< float > &x, vector< float > &y, int n_samples, int n_ftrs)
 vector x,y: transpose/normalizations not done.
 
virtual int predict (MedMat< float > &x, vector< float > &preds) const
 
int predict (vector< float > &x, vector< float > &preds, int n_samples, int n_ftrs) const
 
int threaded_predict (MedMat< float > &x, vector< float > &preds, int nthreads) const
 
int learn (const MedFeatures &features)
 
int learn (const MedFeatures &features, vector< string > &names)
 
virtual int predict (MedFeatures &features) const
 
virtual void calc_feature_importance (vector< float > &features_importance_scores, const string &general_params)
 Feature Importance - assume called after learn.
 
virtual void calc_feature_importance (vector< float > &features_importance_scores, const string &general_params, const MedFeatures *features)
 
virtual void calc_feature_contribs (MedMat< float > &x, MedMat< float > &contribs)
 Feature contributions explains the prediction on each sample (aka BUT_WHY)
 
virtual void calc_feature_contribs_conditional (MedMat< float > &mat_x_in, unordered_map< string, float > &contiditional_variables, MedMat< float > &mat_x_out, MedMat< float > &mat_contribs)
 
virtual void export_predictor (const string &output_fname)
 
int learn_prob_calibration (MedMat< float > &x, vector< float > &y, vector< float > &min_range, vector< float > &max_range, vector< float > &map_prob, int min_bucket_size=10000, float min_score_jump=0.001, float min_prob_jump=0.005, bool fix_prob_order=false)
 calibration for probability using training data
 
int convert_scores_to_prob (const vector< float > &preds, const vector< float > &min_range, const vector< float > &max_range, const vector< float > &map_prob, vector< float > &probs) const
 If you have ran learn_prob_calibration before, you have min_range,max_range,map_prob from This function - that is used to convert preds to probs.
 
int learn_prob_calibration (MedMat< float > &x, vector< float > &y, int poly_rank, vector< double > &params, int min_bucket_size=10000, float min_score_jump=0.001)
 Will create probability bins using Platt scale method.
 
template<class T , class L >
int convert_scores_to_prob (const vector< T > &preds, const vector< double > &params, vector< L > &converted) const
 Converts probability from Platt scale model.
 
virtual bool predict_single_not_implemented ()
 Prepartion function for fast prediction on single item each time.
 
virtual void prepare_predict_single ()
 
virtual void predict_single (const vector< float > &x, vector< float > &preds) const
 
virtual void predict_single (const vector< double > &x, vector< double > &preds) const
 
virtual void calc_feature_importance_shap (vector< float > &features_importance_scores, string &importance_type, const MedFeatures *features)
 
void * new_polymorphic (string derived_class_name)
 for polymorphic classes that want to be able to serialize/deserialize a pointer * to the derived class given its type one needs to implement this function to return a new to the derived class given its type (as in my_type)
 
size_t get_predictor_size ()
 
size_t predictor_serialize (unsigned char *blob)
 
- Public Member Functions inherited from SerializableObject
virtual int version () const
 Relevant for serializations.
 
virtual string my_class_name () const
 For better handling of serializations it is highly recommended that each SerializableObject inheriting class will implement the next method.
 
virtual void serialized_fields_name (vector< string > &field_names) const
 The names of the serialized fields.
 
virtual void pre_serialization ()
 
virtual void post_deserialization ()
 
size_t serialize_vec (vector< unsigned char > &blob)
 
size_t deserialize_vec (vector< unsigned char > &blob)
 
virtual size_t serialize (vector< unsigned char > &blob)
 
virtual size_t deserialize (vector< unsigned char > &blob)
 
virtual int read_from_file (const string &fname)
 read and deserialize model
 
virtual int write_to_file (const string &fname)
 serialize model and write to file
 
virtual int read_from_file_unsafe (const string &fname)
 read and deserialize model without checking version number - unsafe read
 
int init_from_string (string init_string)
 Init from string.
 
int init_params_from_file (string init_file)
 
int init_param_from_file (string file_str, string &param)
 
int update_from_string (const string &init_string)
 
virtual int update (map< string, string > &map)
 Virtual to update object from parsed fields.
 
virtual string object_json () const
 

Data Fields

MedDeepBitParams params
 
- Data Fields inherited from MedPredictor
MedPredictorTypes classifier_type
 The Predicotr enum type.
 
bool transpose_for_learn
 True if need to transpose before learn.
 
bool normalize_for_learn
 True if need to normalize before learn.
 
bool normalize_y_for_learn
 True if need to normalize labels before learn.
 
bool transpose_for_predict
 True if need to transpose before predict.
 
bool normalize_for_predict
 True if need to normalize before predict.
 
vector< string > model_features
 The model features used in Learn, to validate when caling predict.
 
int features_count = 0
 The model features count used in Learn, to validate when caling predict.
 

Additional Inherited Members

- Static Public Member Functions inherited from MedPredictor
static MedPredictormake_predictor (string model_type)
 
static MedPredictormake_predictor (MedPredictorTypes model_type)
 
static MedPredictormake_predictor (string model_type, string params)
 
static MedPredictormake_predictor (MedPredictorTypes model_type, string params)
 
- Protected Member Functions inherited from MedPredictor
void prepare_x_mat (MedMat< float > &x, const vector< float > &wgts, int &nsamples, int &nftrs, bool transpose_needed) const
 
void predict_thread (void *p) const
 

Member Function Documentation

◆ deserialize()

size_t MedDeepBit::deserialize ( unsigned char *  blob)
virtual

Deserialiazing blob to object. returns number of bytes read.

Reimplemented from SerializableObject.

◆ get_size()

size_t MedDeepBit::get_size ( )
virtual

Gets bytes sizes for serializations.

Reimplemented from SerializableObject.

◆ init()

int MedDeepBit::init ( void *  classifier_params)
inlinevirtual

Reimplemented from MedPredictor.

◆ init_defaults()

void MedDeepBit::init_defaults ( )
virtual

Reimplemented from MedPredictor.

◆ Learn()

int MedDeepBit::Learn ( float *  x,
float *  y,
const float *  w,
int  n_samples,
int  n_ftrs 
)
virtual

Learn should be implemented for each model.

This API always assumes the data is already normalized/transposed as needed, and never changes data in x,y,w. method should support calling with w=NULL.

Reimplemented from MedPredictor.

◆ Predict()

int MedDeepBit::Predict ( float *  x,
float *&  preds,
int  n_samples,
int  n_ftrs 
) const
virtual

Predict should be implemented for each model.

This API assumes x is normalized/transposed if needed. preds should either be pre-allocated or NULL - in which case the predictor should allocate it to the right size.

Reimplemented from MedPredictor.

◆ print()

void MedDeepBit::print ( FILE *  fp,
const string &  prefix,
int  level = 0 
) const
virtual

Reimplemented from MedPredictor.

◆ serialize()

size_t MedDeepBit::serialize ( unsigned char *  blob)
virtual

Serialiazing object to blob memory. return number ob bytes wrote to memory.

Reimplemented from SerializableObject.

◆ set_params()

int MedDeepBit::set_params ( map< string, string > &  initialization_map)
virtual

The parsed fields from init command.

if (field == "max_depth") params.max_depth = stoi(entry.second);
else if (field == "num_iterations") params.num_iterations = stoi(entry.second);
else if (field == "num_ftrs_per_round") params.num_ftrs_per_round = stoi(entry.second);
else if (field == "num_vals_to_be_categorial") params.num_vals_to_be_categorial = stoi(entry.second);
else if (field == "nparts_auc") params.nparts_auc = stoi(entry.second);
else if (field == "niter_coordinate_descent") params.niter_coordinate_descent = stoi(entry.second);
else if (field == "niter_auc_gitter") params.niter_auc_gitter = stoi(entry.second);
else if (field == "internal_test_ratio") params.internal_test_ratio = stoi(entry.second);
else if (field == "fraction_auc") params.fraction_auc = stof(entry.second);
else if (field == "grid_fraction") params.grid_fraction = stof(entry.second);
else if (field == "min_fraction_zeros_ones") params.grid_fraction = stof(entry.second);
else if (field == "frac_continuous_frequent") params.frac_continuous_frequent = stof(entry.second);
else if (field == "frac_categorial_frequent") params.frac_categorial_frequent = stof(entry.second);
else if (field == "lambda") params.lambda = stof(entry.second);
else if (field == "min_cor_bin_ftr") params.min_cor_bin_ftr = stof(entry.second);
else MLOG("Unknonw parameter \'%s\' for XGB\n", field.c_str());
#define MLOG(fmt,...)
MLOG() - use LOCAL_SECTION and LOCAL_LEVEL.
Definition Logger.h:145

[MedDeepBit::init]

[MedDeepBit::init]

Reimplemented from MedPredictor.


The documentation for this class was generated from the following files: