template<typename _MatrixType, int _UpLo>
class Eigen::LDLT< _MatrixType, _UpLo >
Robust Cholesky decomposition of a matrix with pivoting.
Parameters
MatrixType
the type of the matrix of which to compute the LDL^T Cholesky decomposition
UpLo
the triangular part that will be used for the decompositon: Lower (default) or Upper. The other triangular part won't be read.
Perform a robust Cholesky decomposition of a positive semidefinite or negative semidefinite matrix such that , where P is a permutation matrix, L is lower triangular with a unit diagonal and D is a diagonal matrix.
The decomposition uses pivoting to ensure stability, so that L will have zeros in the bottom right rank(A) - n submatrix. Avoiding the square root on D also stabilizes the computation.
Remember that Cholesky decompositions are not rank-revealing. Also, do not use a Cholesky decomposition to determine whether a system of equations has a solution.
a solution x of using the current decomposition of A.
This function also supports in-place solves using the syntax x = decompositionObject.solve(x) .
\note_about_checking_solutions
More precisely, this method solves using the decomposition by solving the systems , , , and in succession. If the matrix is singular, then will also be singular (all the other matrices are invertible). In that case, the least-square solution of is computed. This does not mean that this function computes the least-square solution of is is singular.