Medial Code Documentation
Loading...
Searching...
No Matches
Public Types | Public Member Functions | Static Protected Member Functions | Protected Attributes
Eigen::LDLT< _MatrixType, _UpLo > Class Template Reference

Robust Cholesky decomposition of a matrix with pivoting. More...

#include <LDLT.h>

Public Types

enum  {
  RowsAtCompileTime = MatrixType::RowsAtCompileTime , ColsAtCompileTime = MatrixType::ColsAtCompileTime , Options = MatrixType::Options & ~RowMajorBit , MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime ,
  MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime , UpLo = _UpLo
}
 
typedef _MatrixType MatrixType
 
typedef MatrixType::Scalar Scalar
 
typedef NumTraits< typenameMatrixType::Scalar >::Real RealScalar
 
typedef Eigen::Index Index
 
typedef MatrixType::StorageIndex StorageIndex
 
typedef Matrix< Scalar, RowsAtCompileTime, 1, Options, MaxRowsAtCompileTime, 1 > TmpMatrixType
 
typedef Transpositions< RowsAtCompileTime, MaxRowsAtCompileTime > TranspositionType
 
typedef PermutationMatrix< RowsAtCompileTime, MaxRowsAtCompileTime > PermutationType
 
typedef internal::LDLT_Traits< MatrixType, UpLo > Traits
 

Public Member Functions

 LDLT ()
 Default Constructor.
 
 LDLT (Index size)
 Default Constructor with memory preallocation.
 
template<typename InputType >
 LDLT (const EigenBase< InputType > &matrix)
 Constructor with decomposition.
 
void setZero ()
 Clear any existing decomposition.
 
Traits::MatrixU matrixU () const
 
Traits::MatrixL matrixL () const
 
const TranspositionTypetranspositionsP () const
 
Diagonal< const MatrixType > vectorD () const
 
bool isPositive () const
 
bool isNegative (void) const
 
template<typename Rhs >
const Solve< LDLT, Rhs > solve (const MatrixBase< Rhs > &b) const
 
template<typename Derived >
bool solveInPlace (MatrixBase< Derived > &bAndX) const
 
template<typename InputType >
LDLTcompute (const EigenBase< InputType > &matrix)
 
template<typename Derived >
LDLTrankUpdate (const MatrixBase< Derived > &w, const RealScalar &alpha=1)
 
const MatrixType & matrixLDLT () const
 
MatrixType reconstructedMatrix () const
 
Index rows () const
 
Index cols () const
 
ComputationInfo info () const
 Reports whether previous computation was successful.
 
template<typename RhsType , typename DstType >
EIGEN_DEVICE_FUNC void _solve_impl (const RhsType &rhs, DstType &dst) const
 
template<typename InputType >
LDLT< MatrixType, _UpLo > & compute (const EigenBase< InputType > &a)
 Compute / recompute the LDLT decomposition A = L D L^* = U^* D U of matrix.
 
template<typename Derived >
LDLT< MatrixType, _UpLo > & rankUpdate (const MatrixBase< Derived > &w, const typename LDLT< MatrixType, _UpLo >::RealScalar &sigma)
 Update the LDLT decomposition: given A = L D L^T, efficiently compute the decomposition of A + sigma w w^T.
 
template<typename RhsType , typename DstType >
void _solve_impl (const RhsType &rhs, DstType &dst) const
 

Static Protected Member Functions

static void check_template_parameters ()
 

Protected Attributes

MatrixType m_matrix
 
TranspositionType m_transpositions
 
TmpMatrixType m_temporary
 
internal::SignMatrix m_sign
 
bool m_isInitialized
 

Detailed Description

template<typename _MatrixType, int _UpLo>
class Eigen::LDLT< _MatrixType, _UpLo >

Robust Cholesky decomposition of a matrix with pivoting.

Parameters
MatrixTypethe type of the matrix of which to compute the LDL^T Cholesky decomposition
UpLothe triangular part that will be used for the decompositon: Lower (default) or Upper. The other triangular part won't be read.

Perform a robust Cholesky decomposition of a positive semidefinite or negative semidefinite matrix $ A $ such that $ A =  P^TLDL^*P $, where P is a permutation matrix, L is lower triangular with a unit diagonal and D is a diagonal matrix.

The decomposition uses pivoting to ensure stability, so that L will have zeros in the bottom right rank(A) - n submatrix. Avoiding the square root on D also stabilizes the computation.

Remember that Cholesky decompositions are not rank-revealing. Also, do not use a Cholesky decomposition to determine whether a system of equations has a solution.

See also
MatrixBase::ldlt(), SelfAdjointView::ldlt(), class LLT

Member Typedef Documentation

◆ Index

template<typename _MatrixType , int _UpLo>
typedef Eigen::Index Eigen::LDLT< _MatrixType, _UpLo >::Index
Deprecated:
since Eigen 3.3

Constructor & Destructor Documentation

◆ LDLT() [1/3]

template<typename _MatrixType , int _UpLo>
Eigen::LDLT< _MatrixType, _UpLo >::LDLT ( )
inline

Default Constructor.

The default constructor is useful in cases in which the user intends to perform decompositions via LDLT::compute(const MatrixType&).

◆ LDLT() [2/3]

template<typename _MatrixType , int _UpLo>
Eigen::LDLT< _MatrixType, _UpLo >::LDLT ( Index  size)
inlineexplicit

Default Constructor with memory preallocation.

Like the default constructor but with preallocation of the internal data according to the specified problem size.

See also
LDLT()

◆ LDLT() [3/3]

template<typename _MatrixType , int _UpLo>
template<typename InputType >
Eigen::LDLT< _MatrixType, _UpLo >::LDLT ( const EigenBase< InputType > &  matrix)
inlineexplicit

Constructor with decomposition.

This calculates the decomposition for the input matrix.

See also
LDLT(Index size)

Member Function Documentation

◆ info()

template<typename _MatrixType , int _UpLo>
ComputationInfo Eigen::LDLT< _MatrixType, _UpLo >::info ( ) const
inline

Reports whether previous computation was successful.

Returns
Success if computation was succesful, NumericalIssue if the matrix.appears to be negative.

◆ isNegative()

template<typename _MatrixType , int _UpLo>
bool Eigen::LDLT< _MatrixType, _UpLo >::isNegative ( void  ) const
inline
Returns
true if the matrix is negative (semidefinite)

◆ isPositive()

template<typename _MatrixType , int _UpLo>
bool Eigen::LDLT< _MatrixType, _UpLo >::isPositive ( ) const
inline
Returns
true if the matrix is positive (semidefinite)

◆ matrixL()

template<typename _MatrixType , int _UpLo>
Traits::MatrixL Eigen::LDLT< _MatrixType, _UpLo >::matrixL ( ) const
inline
Returns
a view of the lower triangular matrix L

◆ matrixLDLT()

template<typename _MatrixType , int _UpLo>
const MatrixType & Eigen::LDLT< _MatrixType, _UpLo >::matrixLDLT ( ) const
inline
Returns
the internal LDLT decomposition matrix

TODO: document the storage layout

◆ matrixU()

template<typename _MatrixType , int _UpLo>
Traits::MatrixU Eigen::LDLT< _MatrixType, _UpLo >::matrixU ( ) const
inline
Returns
a view of the upper triangular matrix U

◆ rankUpdate()

template<typename _MatrixType , int _UpLo>
template<typename Derived >
LDLT< MatrixType, _UpLo > & Eigen::LDLT< _MatrixType, _UpLo >::rankUpdate ( const MatrixBase< Derived > &  w,
const typename LDLT< MatrixType, _UpLo >::RealScalar &  sigma 
)

Update the LDLT decomposition: given A = L D L^T, efficiently compute the decomposition of A + sigma w w^T.

Parameters
wa vector to be incorporated into the decomposition.
sigmaa scalar, +1 for updates and -1 for "downdates," which correspond to removing previously-added column vectors. Optional; default value is +1.
See also
setZero()

◆ reconstructedMatrix()

template<typename MatrixType , int _UpLo>
MatrixType Eigen::LDLT< MatrixType, _UpLo >::reconstructedMatrix ( ) const
Returns
the matrix represented by the decomposition, i.e., it returns the product: P^T L D L^* P. This function is provided for debug purpose.

◆ setZero()

template<typename _MatrixType , int _UpLo>
void Eigen::LDLT< _MatrixType, _UpLo >::setZero ( )
inline

Clear any existing decomposition.

See also
rankUpdate(w,sigma)

◆ solve()

template<typename _MatrixType , int _UpLo>
template<typename Rhs >
const Solve< LDLT, Rhs > Eigen::LDLT< _MatrixType, _UpLo >::solve ( const MatrixBase< Rhs > &  b) const
inline
Returns
a solution x of $ A x = b $ using the current decomposition of A.

This function also supports in-place solves using the syntax x = decompositionObject.solve(x) .

\note_about_checking_solutions

More precisely, this method solves $ A x = b $ using the decomposition $ A = P^T L D L^* P $ by solving the systems $ P^T y_1 = b $, $ L y_2 = y_1 $, $ D y_3 = y_2 $, $ L^* y_4 = y_3 $ and $ P x = y_4 $ in succession. If the matrix $ A $ is singular, then $ D $ will also be singular (all the other matrices are invertible). In that case, the least-square solution of $ D y_3 = y_2 $ is computed. This does not mean that this function computes the least-square solution of $ A x = b $ is $ A $ is singular.

See also
MatrixBase::ldlt(), SelfAdjointView::ldlt()

◆ transpositionsP()

template<typename _MatrixType , int _UpLo>
const TranspositionType & Eigen::LDLT< _MatrixType, _UpLo >::transpositionsP ( ) const
inline
Returns
the permutation matrix P as a transposition sequence.

◆ vectorD()

template<typename _MatrixType , int _UpLo>
Diagonal< const MatrixType > Eigen::LDLT< _MatrixType, _UpLo >::vectorD ( ) const
inline
Returns
the coefficients of the diagonal matrix D

The documentation for this class was generated from the following file: