Medial Code Documentation
Loading...
Searching...
No Matches
Homogeneous.h
1// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra.
3//
4// Copyright (C) 2009-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
5//
6// This Source Code Form is subject to the terms of the Mozilla
7// Public License v. 2.0. If a copy of the MPL was not distributed
8// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9
10#ifndef EIGEN_HOMOGENEOUS_H
11#define EIGEN_HOMOGENEOUS_H
12
13namespace Eigen {
14
30namespace internal {
31
32template<typename MatrixType,int Direction>
33struct traits<Homogeneous<MatrixType,Direction> >
34 : traits<MatrixType>
35{
38 typedef typename remove_reference<MatrixTypeNested>::type _MatrixTypeNested;
39 enum {
40 RowsPlusOne = (MatrixType::RowsAtCompileTime != Dynamic) ?
41 int(MatrixType::RowsAtCompileTime) + 1 : Dynamic,
42 ColsPlusOne = (MatrixType::ColsAtCompileTime != Dynamic) ?
43 int(MatrixType::ColsAtCompileTime) + 1 : Dynamic,
44 RowsAtCompileTime = Direction==Vertical ? RowsPlusOne : MatrixType::RowsAtCompileTime,
45 ColsAtCompileTime = Direction==Horizontal ? ColsPlusOne : MatrixType::ColsAtCompileTime,
46 MaxRowsAtCompileTime = RowsAtCompileTime,
47 MaxColsAtCompileTime = ColsAtCompileTime,
48 TmpFlags = _MatrixTypeNested::Flags & HereditaryBits,
49 Flags = ColsAtCompileTime==1 ? (TmpFlags & ~RowMajorBit)
50 : RowsAtCompileTime==1 ? (TmpFlags | RowMajorBit)
51 : TmpFlags
52 };
53};
54
55template<typename MatrixType,typename Lhs> struct homogeneous_left_product_impl;
56template<typename MatrixType,typename Rhs> struct homogeneous_right_product_impl;
57
58} // end namespace internal
59
60template<typename MatrixType,int _Direction> class Homogeneous
61 : public MatrixBase<Homogeneous<MatrixType,_Direction> >, internal::no_assignment_operator
62{
63 public:
64
65 typedef MatrixType NestedExpression;
66 enum { Direction = _Direction };
67
69 EIGEN_DENSE_PUBLIC_INTERFACE(Homogeneous)
70
71 explicit inline Homogeneous(const MatrixType& matrix)
72 : m_matrix(matrix)
73 {}
74
75 inline Index rows() const { return m_matrix.rows() + (int(Direction)==Vertical ? 1 : 0); }
76 inline Index cols() const { return m_matrix.cols() + (int(Direction)==Horizontal ? 1 : 0); }
77
78 const NestedExpression& nestedExpression() const { return m_matrix; }
79
80 template<typename Rhs>
81 inline const Product<Homogeneous,Rhs>
82 operator* (const MatrixBase<Rhs>& rhs) const
83 {
84 eigen_assert(int(Direction)==Horizontal);
85 return Product<Homogeneous,Rhs>(*this,rhs.derived());
86 }
87
88 template<typename Lhs> friend
89 inline const Product<Lhs,Homogeneous>
90 operator* (const MatrixBase<Lhs>& lhs, const Homogeneous& rhs)
91 {
92 eigen_assert(int(Direction)==Vertical);
93 return Product<Lhs,Homogeneous>(lhs.derived(),rhs);
94 }
95
96 template<typename Scalar, int Dim, int Mode, int Options> friend
99 {
100 eigen_assert(int(Direction)==Vertical);
102 }
103
104 template<typename Func>
105 EIGEN_STRONG_INLINE typename internal::result_of<Func(Scalar,Scalar)>::type
106 redux(const Func& func) const
107 {
108 return func(m_matrix.redux(func), Scalar(1));
109 }
110
111 protected:
112 typename MatrixType::Nested m_matrix;
113};
114
126template<typename Derived>
129{
130 EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived);
131 return HomogeneousReturnType(derived());
132}
133
142template<typename ExpressionType, int Direction>
148
157template<typename Derived>
160{
161 EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived);
162 return ConstStartMinusOne(derived(),0,0,
163 ColsAtCompileTime==1?size()-1:1,
164 ColsAtCompileTime==1?1:size()-1) / coeff(size()-1);
165}
166
175template<typename ExpressionType, int Direction>
178{
179 return HNormalized_Block(_expression(),0,0,
180 Direction==Vertical ? _expression().rows()-1 : _expression().rows(),
181 Direction==Horizontal ? _expression().cols()-1 : _expression().cols()).cwiseQuotient(
183 Direction==Vertical ? HNormalized_SizeMinusOne : 1,
184 Direction==Horizontal ? HNormalized_SizeMinusOne : 1>
185 (HNormalized_Factors(_expression(),
186 Direction==Vertical ? _expression().rows()-1:0,
187 Direction==Horizontal ? _expression().cols()-1:0,
188 Direction==Vertical ? 1 : _expression().rows(),
189 Direction==Horizontal ? 1 : _expression().cols()),
190 Direction==Vertical ? _expression().rows()-1 : 1,
191 Direction==Horizontal ? _expression().cols()-1 : 1));
192}
193
194namespace internal {
195
196template<typename MatrixOrTransformType>
198{
200 static const type& run(const type &x) { return x; }
201};
202
203template<typename Scalar, int Dim, int Mode,int Options>
204struct take_matrix_for_product<Transform<Scalar, Dim, Mode, Options> >
205{
208 static type run (const TransformType& x) { return x.affine(); }
209};
210
211template<typename Scalar, int Dim, int Options>
212struct take_matrix_for_product<Transform<Scalar, Dim, Projective, Options> >
213{
215 typedef typename TransformType::MatrixType type;
216 static const type& run (const TransformType& x) { return x.matrix(); }
217};
218
219template<typename MatrixType,typename Lhs>
221{
225 typedef typename make_proper_matrix_type<
227 LhsMatrixTypeCleaned::RowsAtCompileTime,
228 MatrixTypeCleaned::ColsAtCompileTime,
229 MatrixTypeCleaned::PlainObject::Options,
230 LhsMatrixTypeCleaned::MaxRowsAtCompileTime,
231 MatrixTypeCleaned::MaxColsAtCompileTime>::type ReturnType;
232};
233
234template<typename MatrixType,typename Lhs>
236 : public ReturnByValue<homogeneous_left_product_impl<Homogeneous<MatrixType,Vertical>,Lhs> >
237{
238 typedef typename traits<homogeneous_left_product_impl>::LhsMatrixType LhsMatrixType;
239 typedef typename remove_all<LhsMatrixType>::type LhsMatrixTypeCleaned;
240 typedef typename remove_all<typename LhsMatrixTypeCleaned::Nested>::type LhsMatrixTypeNested;
241 homogeneous_left_product_impl(const Lhs& lhs, const MatrixType& rhs)
243 m_rhs(rhs)
244 {}
245
246 inline Index rows() const { return m_lhs.rows(); }
247 inline Index cols() const { return m_rhs.cols(); }
248
249 template<typename Dest> void evalTo(Dest& dst) const
250 {
251 // FIXME investigate how to allow lazy evaluation of this product when possible
253 LhsMatrixTypeNested::RowsAtCompileTime,
254 LhsMatrixTypeNested::ColsAtCompileTime==Dynamic?Dynamic:LhsMatrixTypeNested::ColsAtCompileTime-1>
255 (m_lhs,0,0,m_lhs.rows(),m_lhs.cols()-1) * m_rhs;
256 dst += m_lhs.col(m_lhs.cols()-1).rowwise()
257 .template replicate<MatrixType::ColsAtCompileTime>(m_rhs.cols());
258 }
259
260 typename LhsMatrixTypeCleaned::Nested m_lhs;
261 typename MatrixType::Nested m_rhs;
262};
263
264template<typename MatrixType,typename Rhs>
266{
268 MatrixType::RowsAtCompileTime,
269 Rhs::ColsAtCompileTime,
270 MatrixType::PlainObject::Options,
271 MatrixType::MaxRowsAtCompileTime,
272 Rhs::MaxColsAtCompileTime>::type ReturnType;
273};
274
275template<typename MatrixType,typename Rhs>
277 : public ReturnByValue<homogeneous_right_product_impl<Homogeneous<MatrixType,Horizontal>,Rhs> >
278{
280 homogeneous_right_product_impl(const MatrixType& lhs, const Rhs& rhs)
281 : m_lhs(lhs), m_rhs(rhs)
282 {}
283
284 inline Index rows() const { return m_lhs.rows(); }
285 inline Index cols() const { return m_rhs.cols(); }
286
287 template<typename Dest> void evalTo(Dest& dst) const
288 {
289 // FIXME investigate how to allow lazy evaluation of this product when possible
290 dst = m_lhs * Block<const RhsNested,
291 RhsNested::RowsAtCompileTime==Dynamic?Dynamic:RhsNested::RowsAtCompileTime-1,
292 RhsNested::ColsAtCompileTime>
293 (m_rhs,0,0,m_rhs.rows()-1,m_rhs.cols());
294 dst += m_rhs.row(m_rhs.rows()-1).colwise()
295 .template replicate<MatrixType::RowsAtCompileTime>(m_lhs.rows());
296 }
297
298 typename MatrixType::Nested m_lhs;
299 typename Rhs::Nested m_rhs;
300};
301
302template<typename ArgType,int Direction>
303struct evaluator_traits<Homogeneous<ArgType,Direction> >
304{
306 typedef HomogeneousShape Shape;
307 static const int AssumeAliasing = 0;
308};
309
311
312
313template<typename ArgType,int Direction>
314struct unary_evaluator<Homogeneous<ArgType,Direction>, IndexBased>
315 : evaluator<typename Homogeneous<ArgType,Direction>::PlainObject >
316{
318 typedef typename XprType::PlainObject PlainObject;
320
321 explicit unary_evaluator(const XprType& op)
322 : Base(), m_temp(op)
323 {
324 ::new (static_cast<Base*>(this)) Base(m_temp);
325 }
326
327protected:
328 PlainObject m_temp;
329};
330
331// dense = homogeneous
332template< typename DstXprType, typename ArgType, typename Scalar>
333struct Assignment<DstXprType, Homogeneous<ArgType,Vertical>, internal::assign_op<Scalar>, Dense2Dense, Scalar>
334{
336 static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op<Scalar> &)
337 {
338 dst.template topRows<ArgType::RowsAtCompileTime>(src.nestedExpression().rows()) = src.nestedExpression();
339 dst.row(dst.rows()-1).setOnes();
340 }
341};
342
343// dense = homogeneous
344template< typename DstXprType, typename ArgType, typename Scalar>
345struct Assignment<DstXprType, Homogeneous<ArgType,Horizontal>, internal::assign_op<Scalar>, Dense2Dense, Scalar>
346{
348 static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op<Scalar> &)
349 {
350 dst.template leftCols<ArgType::ColsAtCompileTime>(src.nestedExpression().cols()) = src.nestedExpression();
351 dst.col(dst.cols()-1).setOnes();
352 }
353};
354
355template<typename LhsArg, typename Rhs, int ProductTag>
357{
358 template<typename Dest>
359 static void evalTo(Dest& dst, const Homogeneous<LhsArg,Horizontal>& lhs, const Rhs& rhs)
360 {
361 homogeneous_right_product_impl<Homogeneous<LhsArg,Horizontal>, Rhs>(lhs.nestedExpression(), rhs).evalTo(dst);
362 }
363};
364
365template<typename Lhs,typename Rhs>
367{
368 enum {
369 Dim = Lhs::ColsAtCompileTime,
370 Rows = Lhs::RowsAtCompileTime
371 };
372 typedef typename Rhs::template ConstNRowsBlockXpr<Dim>::Type LinearBlockConst;
373 typedef typename remove_const<LinearBlockConst>::type LinearBlock;
374 typedef typename Rhs::ConstRowXpr ConstantColumn;
378};
379
380template<typename Lhs, typename Rhs, int ProductTag>
382 : public evaluator<typename homogeneous_right_product_refactoring_helper<typename Lhs::NestedExpression,Rhs>::Xpr>
383{
386 typedef typename helper::ConstantBlock ConstantBlock;
387 typedef typename helper::Xpr RefactoredXpr;
389
391 : Base( xpr.lhs().nestedExpression() .lazyProduct( xpr.rhs().template topRows<helper::Dim>(xpr.lhs().nestedExpression().cols()) )
392 + ConstantBlock(xpr.rhs().row(xpr.rhs().rows()-1),xpr.lhs().rows(), 1) )
393 {}
394};
395
396template<typename Lhs, typename RhsArg, int ProductTag>
398{
399 template<typename Dest>
400 static void evalTo(Dest& dst, const Lhs& lhs, const Homogeneous<RhsArg,Vertical>& rhs)
401 {
402 homogeneous_left_product_impl<Homogeneous<RhsArg,Vertical>, Lhs>(lhs, rhs.nestedExpression()).evalTo(dst);
403 }
404};
405
406template<typename Lhs,typename Rhs>
408{
409 enum {
410 Dim = Rhs::RowsAtCompileTime,
411 Cols = Rhs::ColsAtCompileTime
412 };
413 typedef typename Lhs::template ConstNColsBlockXpr<Dim>::Type LinearBlockConst;
414 typedef typename remove_const<LinearBlockConst>::type LinearBlock;
415 typedef typename Lhs::ConstColXpr ConstantColumn;
418 typedef CwiseBinaryOp<internal::scalar_sum_op<typename Lhs::Scalar>, const LinearProduct, const ConstantBlock> Xpr;
419};
420
421template<typename Lhs, typename Rhs, int ProductTag>
423 : public evaluator<typename homogeneous_left_product_refactoring_helper<Lhs,typename Rhs::NestedExpression>::Xpr>
424{
427 typedef typename helper::ConstantBlock ConstantBlock;
428 typedef typename helper::Xpr RefactoredXpr;
430
432 : Base( xpr.lhs().template leftCols<helper::Dim>(xpr.rhs().nestedExpression().rows()) .lazyProduct( xpr.rhs().nestedExpression() )
433 + ConstantBlock(xpr.lhs().col(xpr.lhs().cols()-1),1,xpr.rhs().cols()) )
434 {}
435};
436
437template<typename Scalar, int Dim, int Mode,int Options, typename RhsArg, int ProductTag>
439{
441 template<typename Dest>
442 static void evalTo(Dest& dst, const TransformType& lhs, const Homogeneous<RhsArg,Vertical>& rhs)
443 {
445 }
446};
447
448template<typename ExpressionType, int Side, bool Transposed>
450 : public permutation_matrix_product<ExpressionType, Side, Transposed, DenseShape>
451{};
452
453} // end namespace internal
454
455} // end namespace Eigen
456
457#endif // EIGEN_HOMOGENEOUS_H
Expression of a fixed-size or dynamic-size block.
Definition Block.h:106
\geometry_module
Definition Homogeneous.h:62
Base class for all dense matrices, vectors, and expressions.
Definition MatrixBase.h:50
Expression of the product of two arbitrary matrices or vectors.
Definition Product.h:111
Expression of the multiple replication of a matrix or vector.
Definition Replicate.h:62
Definition ReturnByValue.h:53
Pseudo expression representing a solving operation.
Definition Solve.h:63
\geometry_module
Definition Transform.h:201
Pseudo expression providing partial reduction operations.
Definition VectorwiseOp.h:157
@ Horizontal
For Reverse, all rows are reversed; for PartialReduxExpr and VectorwiseOp, act on rows.
Definition Constants.h:268
@ Vertical
For Reverse, all columns are reversed; for PartialReduxExpr and VectorwiseOp, act on columns.
Definition Constants.h:265
@ Projective
Transformation is a general projective transformation stored as a (Dim+1)^2 matrix.
Definition Constants.h:454
const unsigned int RowMajorBit
for a matrix, this means that the storage order is row-major.
Definition Constants.h:61
Definition Constants.h:511
Definition Constants.h:513
Definition AssignEvaluator.h:677
Definition AssignEvaluator.h:684
Definition AssignEvaluator.h:674
Definition Constants.h:525
Definition AssignmentFunctors.h:21
Definition CoreEvaluators.h:75
Definition CoreEvaluators.h:82
Definition ProductEvaluators.h:81
Definition ProductEvaluators.h:880
Definition ForwardDeclarations.h:165
Definition Meta.h:253
Definition Homogeneous.h:198
Definition ForwardDeclarations.h:17
Definition Meta.h:30
Definition CoreEvaluators.h:56