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1. WEIGHTED QUANTILE SKETCH

In this section, we introduce the weighted quantile sketch
algorithm. Approximate answer of quantile queries is for
many real-world applications. One classical approach to this
problem is GK algorithm [1] and extensions based on the GK
framework [2]. The main component of these algorithms is
a data structure called quantile summary, that is able to
answer quantile queries with relative accuracy of e. Two
operations are defined for a quantile summary:

e A merge operation that combines two summaries with
approximation error €; and ez together and create a

merged summary with approximation error max(e1, €2).

e A prune operation that reduces the number of elements
in the summary to b 4+ 1 and changes approximation
error from € to € + %

A quantile summary with merge and prune operations forms
basic building blocks of the distributed and streaming quan-
tile computing algorithms [2].

In order to use quantile computation for approximate tree
boosting, we need to find quantiles on weighted data. This
more general problem is not supported by any of the ex-
isting algorithm. In this section, we describe a non-trivial
weighted quantile summary structure to solve this problem.
Importantly, the new algorithm contains merge and prune
operations with the same guarantee as GK summary. This
allows our summary to be plugged into all the frameworks
used GK summary as building block and answer quantile
queries over weighted data efficiently.
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1.1 Formalization and Definitions

Given an input multi-set D = {(x1,w1), (z2, w2) - - (Tn, wn)}

such that w; € [0,400),z; € X. Each x; corresponds to a
position of the point and w; is the weight of the point. As-
sume we have a total order < defined on X. Let us define
two rank functions 75,75 : X — [0, +00)

roly) = Y. w (1)

(z,w)€D,z<y

rhly) = Y w (2)

(z,w) €D,z <y

We should note that since D is defined to be a multiset of
the points. It can contain multiple record with exactly same
position z and weight w. We also define another weight
function wp : X — [0, +00) as

+

wo(y) =rpW) —rpy) = Y., w (3)

(z,w)eD,z=y

Finally, we also define the weight of multi-set D to be the
sum of weights of all the points in the set

wD= Y w (4)
(z,w)eD
Our task is given a series of input D, to estimate r*(y)
and r~(y) for y € X as well as finding points with specific
rank. Given these notations, we define quantile summary of
weighted examples as follows:

DEFINITION 1.1. Quantile Summary of Weighted Data
A quantile summary for D is defined to be tuple Q(D) =
(S, 7, 7p,@p), where S = {x1,m2, -+ , x4} is selected from
the points in D (i.e. z; € {z|(z,w) € D}) with the following
properties:

1) x; < xiq1 for all i, and 1 and xy are minimum and
maximum point in D:

r1 = min x, xTp = max <
(z,w)eD (z,w)eD

2) 7, Fp and &p are functions in S — [0, +00), that satis-

fies
Fp(xi) < rp(m), ip(w) > rh(@:), @p(x) <wp(w), (5)

the equality sign holds for mazimum and minimum point (
o (i) = rp (@), 75 (i) = rp (@) and Op (i) = wp(z:) for

1€ {1,k}).



Finally, the function value must also satisfy the following
constraints

p(@ir1), 7h(@i) < Fh(xig1) —@p(it1)

(6)

Since these functions are only defined on S, it is suffice to
use 4k record to store the summary. Specifically, we need to
remember each x; and the corresponding function values of
each z;.

7p(2:) +op(z;) < 7

DEFINITION 1.2. Extension of Function Domains
Given a quantile summary Q(D) = (S, 73,75, 0p) defined in
Definition 1.1, the domain of 74, 7, and &p were defined
only in S. We extend the definition of these functions to
X — [0,400) as follows

When y < x1:
ip(y) =0, Fp(y) =0, @p(y) =0 (7)

When y > xy:
o (y) = Fp(@r), Pp(y) = Fp(ex), @p(y) =0 (8)

(z
When y € (zi,xit1) for some i:

Pp(y) = 7p(xi) + Op(24),

b (y) = Fp(zis1) — @p(Tig1), (9)
wp(y) =0

LEMMA 1.1. Extended Constraint
The extended definition of 71, fg, wp satisfies the following
constraints

ip(y) <o), FH(y) = rhy), @p(y) <wn(y) (10)

Fp(y)+@n(y) < 7p(z), 7h(y) < Fph(x)—ap(a), forally <z

(11)
ProoOF. The only non-trivial part is to prove the case
when y € (zi, Tit1):
Pp(y) = Fp(wi) + @p(x:) < rp(x:) + wop(wi) < rp(y)

7b(y) = Fp(Ti

This proves Eq.

)=@p (wit1) = rh(@ir1)—wp (Tip1) > rH(y)
(10). Furthermore, we can verify that
7b(2i) < Fp(Tiv1) — Op(@it1) = Fp(y) — O (y)

7p(y) +wn(y) = 7p(xi) + @p(2i) + 0 < Fp(2ita)

" (y) = Fp(iy1) — Op(Tig)

Using these facts and transitivity of < relation, we can prove
Eq. (11) O

We should note that the extension is based on the ground
case defined in S, and we do not require extra space to store
the summary in order to use the extended definition. We
are now ready to introduce the definition of e-approximate
quantile summary.

DEFINITION 1.3. e-Approximate Quantile Summary
Given a quantile summary Q(D) = (S,75,7p,@p), we call
it is e-approrimate summary if for any y € X

Fh(y) — ip(y) — @p(y) < ew(D) (12)

We use this definition since we know that v~ (y) € [F5(y), 7 (y)—

@p(y)] and r*(y) € [Fp(y) +@p(y), 75 (y)]. Eq. (12) means
the we can get estimation of 7 (y) and v~ (y) by error of at
most ew(D).

LEMMA 1.2. Quantile summary Q(D) = (S,75,75,0p)
is an e-approximate summary if and only if the following
two condition holds

5 (i) — P (2:) — @p(2:) < ew(D) (13)

b (Tis1) — Fp(2:) — Op(ig1) — Op(2i) < ew(D)  (14)

PROOF. The key is again consider y € (x;, Tiy1)
b (y)—p(y)—0n(y) =

This means the condition in Eq. (14) plus Eq.(13) can give
us Eq. (12) O

Property of Extended Function In this section, we have
introduced the extension of function 7j,75,0p to X —
[0, +00). The key theme discussed in this section is the rela-
tion of constraints on the original function and constraints
on the extended function. Lemma 1.1 and 1.2 show that
the constraints on the original function can lead to in more
general constraints on the extended function. This is a very
useful property which will be used in the proofs in later sec-
tions.

1.2 Construction of Initial Summary

Given a small multi-set D = {(z1, w1), (x2,w2), - -
we can construct initial summary Q(D) = {S, 7}, 75, op},
with S to the set of all values in D (S = {z|(z,w) € D}),
and 75, 7, Op defined to be

ih(z) =rh(z), 7p(z) =71p(x), @p(2r) =wp(z)forz €S

(15)
The constructed summary is 0-approximate summary, since
it can answer all the queries accurately. The constructed
summary can be feed into future operations described in
the latter sections.

1.3 Merge Operation

In this section, we define how we can merge the two sum-
maries together. Assume we have Q(D1) = (51, 7%1 yTp, s WDy)
and Q(D2) = (Sg,Fgl,f52,®D2) quantile summary of two
dataset D1 and D2. Let D = D; UD2, and define the merged
summary Q(D) = (S,75,7p,0p) as follows.

S:{a?hl‘g---,l‘k},xiGSl or z; € S (16)

The points in S are combination of points in S; and Sz. And
the function 7*; 75, wp are defined to be

Fp(zi) = Tp, () + 7p, (2:) (17)
ip (i) = 7h, (i) + b, (2:) (18)
WD (acz) = Wp, (iCz) + Wp, (wz) (19)

Here we use functions defined on S — [0, +00) on the left
sides of equalities and use the extended function definitions
on the right sides.

Due to additive nature of v+, r~
formally written as

and w, which can be

rp(y) =rp, (y) + o, (¥),
5 (y) =rb, (y) + 5, (y) (20)

wp(y) =wp, (y) + wp, (¥),

(7 (xi41) @D (Tig1)|—[F (2:) +@p (2:)] -0

,(xn,wn)},



Algorithm 1: Query Function g(@, d)

Input: d: 0 <d < w(D)
Input: Q(D) = (S, 75,75, 0p) where
S:xl,xg,--~ , Lk
if d < 1[fp(x1) + 75 (21)] then return z; ;
if d > 1[Fp(wk) + 75 (2x)] then return wy ;
Find 4 such that
57 (@) + 75 (2:)] < d < §[Fp(it1) + 7 (it1)]
if 2d < ”FE(.’I}Z) + (:)'D(liz) + F:E(:I:Z+1) — [:)D(.Ifi_t,_l) then
| return z;

else
| return z;q1
end

and the extended constraint property in Lemma 1.1, we can
verify that Q(D) satisfies all the constraints in Definition 1.1.
Therefore it is a valid quantile summary.

LEMMA 1.3. The combined quantile summary satisfies

p(y) = 7p, (¥) + 7p, (¥) (21)
5 (y) =75, () + 75, (v) (22)
o (y) = @, (y) + ©p, () (23)

forallye X

This can be obtained by straight-forward application of Def-
inition 1.2.

THEOREM 1.1. If Q(D:) is e1-approzimate summary, and
Q(D3) is ex-approzimate summary. Then the merged sum-
mary Q(D) is max(e1, €2)-approzimate summary.

ProOF. For any y € X, we have

"5 (y) — Fp(y) — @p(y)
=[7h, () + b, )] — [Fp, ) + 75, (¥)] — (@D, (y) + @D, ()]

§61w(D1) + EQW(DQ) < max(el, 62)0J('D1 U Dg)

Here the first inequality is due to Lemma 1.3. [

1.4 Prune Operation

Before we start discussing the prune operation, we first in-
troduce a query function g(@Q, d). The definition of function
is shown in Algorithm 1. For a given rank d, the function re-
turns a x whose rank is close to d. This property is formally
described in the following Lemma.

LEMMA 1.4. For a given e-approzimate summary Q(D) =
(S, 75, 7p,0p), z* = g(Q, d) satisfies the following property
€

d>7h(z") — op(z”) — iw(D)

e (24)
4 < () +dp(a’) + Sw(D)
PROOF. We need to discuss four possible cases
e d < i[fp(z1) + 7h(z1)] and 2* = z;. Note that

the rank information for z; is accurate (Op(z1) =

75 (21) = w(w1), 7p(21) = 0), we have

d>0-— iw(D) =id(z1) — Op(z1) — 50.1(1))

d< %[Fg(m) + 75 (z1)]

< 7p(x1) +7p(z1)

+7’7§
= Fp(21) + @p(21)
o d> L[fy(zk) + 75 (2x)] and 2 = zy, then
1. .
4> 3 lFp(a) + ()]

= hlan) — b (en) — p(on)

= 7b(on) = 3@p (@)
d < w(D) + %w(D) = 7 (k) + op(zk) + gw(p)

e ¥ = x; in the general case, then
2d < 7p (i) + (i) + Fp(@ir1) — Op(Ti+1)
2[7p (i) + @p(20)] + [Fp(2ir1) — Dp(Tit1) — Fp (@) — Dp(wi)]

< 2[fp(xi) + @p(ws)] + ew(D)

2d > f,D(xi) + f-{)(l‘i)
= 2[5 (i) — Op(2:)] — [Fh (@) — @p(xi) — 7p(2:)] + Op ()
> 2[fp (i) — &p(w:)] — ew(D) +0

*

e " = x;41 in the general case
2d > 75 (2i) + @p(xi) + Fh(Tie1) — Op(Tigr)
= 2[7p (zi41) — Op(Ti41)]
— [FB(@i41) — @ (wis1) — Fp (i) — Dp(2i)]
> 27 (it1) + Op(wit1)] — €w(D)
2d < Fp (i) + 7p(Tit1)

27p(xit1) + @p(Tis1)]

+ 7 (i) — Op(zis1) — 7p(zir1)] — @b (Tit1)

< 20p (wis1) + G (@ie1)] + (D) — 0
O

Now we are ready to introduce the prune operation. Giv-

en a quantile summary Q(D) = (S,7},7p,@p) with S =
{z1,x2, -,z } elements, and a memory budget b. The
prune operation creates another summary Q'(D) = (S’, 75, 75, 0p)
with " = {@}, 5, - , T4 }, where zj are selected by query

the original summary such that

si=g (@ ).

The definition of 73,75, &p in Q' is copied from original
summary @, by restricting input domain from S to S’. There
could be duplicated entries in the S’. These duplicated en-
tries can be safely removed to further reduce the memory
cost. Since all the elements in Q' comes from @Q, we can
verify that Q' satisfies all the constraints in Definition 1.1
and is a valid quantile summary.



THEOREM 1.2. Let Q'(D) be the summary pruned from
an e-approzimate quantile summary Q(D) with b memory
budget. Then Q'(D) is a (€ + })-approzimate summary.

PROOF. We only need to prove the property in Eq. (14)
for Q'. Using Lemma 1.4, we have

(D) + 5w(D) 2 (el — ()
L R(D) - Sw(D) < plaf) +dn(a)

Combining these inequalities gives
P (%i1) — Op(@ip) — Fp(ar) — op(af)

<[(D) + Sw(D)] - |

1—1 € 1
5 w(P) = qw(D)] = (; +)w(D)

a
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