PostProcessors are processors which occours after predicitons.
Full PostProcessor code doc: https://Medial-EarlySign.github.io/MR_LIBS/classPostProcessor.html
Some PostProcessor, for full list of types and json values to put in names please reffer to PostProcessor_Types.
· We have now MultiPostProcessor (for parallelism)
· Calibrator – to calibrate scores to probabilities for example
· ModelExplainer – Several options for ButWhy:
PostProcessor API:
ModelExplainer API:
Examples:
Calibration
Explainer of prediction "But Why"
Example for calibration:
{"action_type":"post_processor","pp_type":"calibrator","calibration_type":"binning","min_preds_in_bin":"200","min_prob_res":"0.005",//"calibration_samples":"", //on train or give your samples to calibrate on"verbose":"1"}
{"action_type":"post_processor","pp_type":"lime_shap",//"pp_type":"shapley","gen_type":"GIBBS","n_masks":"500",//how many masks to sample for learn"generator_args":"{kmeans=0;select_with_repeats=0;max_iters=0;predictor_type=qrf;predictor_args={spread=0;type=categorial_entropy;learn_nthreads=40;predict_nthreads=40;ntrees=50;maxq=500;min_node=300;get_only_this_categ=-1};num_class_setup=n_categ;bin_settings={split_method=iterative_merge;min_bin_count=500;binCnt=150};selection_ratio=1.0}",//when using Gibbs, otherwise give GAN path here"sampling_args":"{burn_in_count=50;jump_between_samples=10;samples_count=1;find_real_value_bin=1;use_cache=0}"//in GAN not needed}