5#include <xgboost/json.h>
11#include "../../../src/common/linalg_op.h"
12#include "../helpers.h"
17inline void CheckDeterministicMetricElementWise(StringView name, int32_t device) {
19 std::unique_ptr<Metric> metric{
Metric::Create(name.c_str(), &ctx)};
21 HostDeviceVector<float> predts;
22 size_t n_samples = 2048;
24 auto p_fmat = EmptyDMatrix();
25 MetaInfo& info = p_fmat->Info();
26 info.labels.Reshape(n_samples, 1);
27 info.num_row_ = n_samples;
28 auto &h_labels = info.labels.Data()->HostVector();
29 auto &h_predts = predts.HostVector();
32 SimpleRealUniformDistribution<float> dist{0.0f, 1.0f};
34 h_labels.resize(n_samples);
35 h_predts.resize(n_samples);
37 for (
size_t i = 0; i < n_samples; ++i) {
38 h_predts[i] = dist(&lcg);
39 h_labels[i] = dist(&lcg);
42 auto result = metric->Evaluate(predts, p_fmat);
43 for (
size_t i = 0; i < 8; ++i) {
44 ASSERT_EQ(metric->Evaluate(predts, p_fmat), result);
48inline void VerifyRMSE(DataSplitMode data_split_mode = DataSplitMode::kRow) {
52 ASSERT_STREQ(metric->
Name(),
"rmse");
53 EXPECT_NEAR(GetMetricEval(metric, {0, 1}, {0, 1}, {}, {}, data_split_mode), 0, 1e-10);
54 EXPECT_NEAR(GetMetricEval(metric,
55 {0.1f, 0.9f, 0.1f, 0.9f},
56 { 0, 0, 1, 1}, {}, {}, data_split_mode),
58 auto expected = 2.8284f;
62 EXPECT_NEAR(GetMetricEval(metric,
63 {0.1f, 0.9f, 0.1f, 0.9f},
65 { -1, 1, 9, -9}, {}, data_split_mode),
67 EXPECT_NEAR(GetMetricEval(metric,
68 {0.1f, 0.9f, 0.1f, 0.9f},
70 { 1, 2, 9, 8}, {}, data_split_mode),
74 CheckDeterministicMetricElementWise(StringView{
"rmse"}, GPUIDX);
77inline void VerifyRMSLE(DataSplitMode data_split_mode = DataSplitMode::kRow) {
81 ASSERT_STREQ(metric->
Name(),
"rmsle");
82 EXPECT_NEAR(GetMetricEval(metric, {0, 1}, {0, 1}, {}, {}, data_split_mode), 0, 1e-10);
83 EXPECT_NEAR(GetMetricEval(metric,
84 {0.1f, 0.2f, 0.4f, 0.8f, 1.6f},
85 {1.0f, 1.0f, 1.0f, 1.0f, 1.0f}, {}, {}, data_split_mode),
87 auto expected = 0.6212f;
91 EXPECT_NEAR(GetMetricEval(metric,
92 {0.1f, 0.2f, 0.4f, 0.8f, 1.6f},
93 {1.0f, 1.0f, 1.0f, 1.0f, 1.0f},
94 { 0, -1, 1, -9, 9}, {}, data_split_mode),
96 EXPECT_NEAR(GetMetricEval(metric,
97 {0.1f, 0.2f, 0.4f, 0.8f, 1.6f},
98 {1.0f, 1.0f, 1.0f, 1.0f, 1.0f},
99 { 0, 1, 2, 9, 8}, {}, data_split_mode),
103 CheckDeterministicMetricElementWise(StringView{
"rmsle"}, GPUIDX);
106inline void VerifyMAE(DataSplitMode data_split_mode = DataSplitMode::kRow) {
110 ASSERT_STREQ(metric->
Name(),
"mae");
111 EXPECT_NEAR(GetMetricEval(metric, {0, 1}, {0, 1}, {}, {}, data_split_mode), 0, 1e-10);
112 EXPECT_NEAR(GetMetricEval(metric,
113 {0.1f, 0.9f, 0.1f, 0.9f},
114 { 0, 0, 1, 1}, {}, {}, data_split_mode),
116 auto expected = 8.0f;
120 EXPECT_NEAR(GetMetricEval(metric,
121 {0.1f, 0.9f, 0.1f, 0.9f},
123 { -1, 1, 9, -9}, {}, data_split_mode),
125 EXPECT_NEAR(GetMetricEval(metric,
126 {0.1f, 0.9f, 0.1f, 0.9f},
128 { 1, 2, 9, 8}, {}, data_split_mode),
132 CheckDeterministicMetricElementWise(StringView{
"mae"}, GPUIDX);
135inline void VerifyMAPE(DataSplitMode data_split_mode = DataSplitMode::kRow) {
139 ASSERT_STREQ(metric->
Name(),
"mape");
140 EXPECT_NEAR(GetMetricEval(metric, {150, 300}, {100, 200}, {}, {}, data_split_mode), 0.5f, 1e-10);
141 EXPECT_NEAR(GetMetricEval(metric,
142 {50, 400, 500, 4000},
143 {100, 200, 500, 1000}, {}, {}, data_split_mode),
145 auto expected = -26.5f;
149 EXPECT_NEAR(GetMetricEval(metric,
150 {50, 400, 500, 4000},
151 {100, 200, 500, 1000},
152 { -1, 1, 9, -9}, {}, data_split_mode),
154 EXPECT_NEAR(GetMetricEval(metric,
155 {50, 400, 500, 4000},
156 {100, 200, 500, 1000},
157 { 1, 2, 9, 8}, {}, data_split_mode),
161 CheckDeterministicMetricElementWise(StringView{
"mape"}, GPUIDX);
164inline void VerifyMPHE(DataSplitMode data_split_mode = DataSplitMode::kRow) {
168 ASSERT_STREQ(metric->
Name(),
"mphe");
169 EXPECT_NEAR(GetMetricEval(metric.get(), {0, 1}, {0, 1}, {}, {}, data_split_mode), 0, 1e-10);
170 EXPECT_NEAR(GetMetricEval(metric.get(),
171 {0.1f, 0.9f, 0.1f, 0.9f},
172 { 0, 0, 1, 1}, {}, {}, data_split_mode),
174 auto expected = 3.40375f;
178 EXPECT_NEAR(GetMetricEval(metric.get(),
179 {0.1f, 0.9f, 0.1f, 0.9f},
181 { -1, 1, 9, -9}, {}, data_split_mode),
183 EXPECT_NEAR(GetMetricEval(metric.get(),
184 {0.1f, 0.9f, 0.1f, 0.9f},
186 { 1, 2, 9, 8}, {}, data_split_mode),
189 CheckDeterministicMetricElementWise(StringView{
"mphe"}, GPUIDX);
191 metric->
Configure({{
"huber_slope",
"0.1"}});
192 EXPECT_NEAR(GetMetricEval(metric.get(),
193 {0.1f, 0.9f, 0.1f, 0.9f},
195 { 1, 2, 9, 8}, {}, data_split_mode),
199inline void VerifyLogLoss(DataSplitMode data_split_mode = DataSplitMode::kRow) {
203 ASSERT_STREQ(metric->
Name(),
"logloss");
204 EXPECT_NEAR(GetMetricEval(metric, {0, 1}, {0, 1}, {}, {}, data_split_mode), 0, 1e-10);
205 EXPECT_NEAR(GetMetricEval(metric,
206 {0.5f, 1e-17f, 1.0f+1e-17f, 0.9f},
207 { 0, 0, 1, 1}, {}, {}, data_split_mode),
209 EXPECT_NEAR(GetMetricEval(metric,
210 {0.1f, 0.9f, 0.1f, 0.9f},
211 { 0, 0, 1, 1}, {}, {}, data_split_mode),
213 auto expected = 21.9722f;
217 EXPECT_NEAR(GetMetricEval(metric,
218 {0.1f, 0.9f, 0.1f, 0.9f},
220 { -1, 1, 9, -9}, {}, data_split_mode),
222 EXPECT_NEAR(GetMetricEval(metric,
223 {0.1f, 0.9f, 0.1f, 0.9f},
225 { 1, 2, 9, 8}, {}, data_split_mode),
229 CheckDeterministicMetricElementWise(StringView{
"logloss"}, GPUIDX);
232inline void VerifyError(DataSplitMode data_split_mode = DataSplitMode::kRow) {
236 ASSERT_STREQ(metric->
Name(),
"error");
237 EXPECT_NEAR(GetMetricEval(metric, {0, 1}, {0, 1}, {}, {}, data_split_mode), 0, 1e-10);
238 EXPECT_NEAR(GetMetricEval(metric,
239 {0.1f, 0.9f, 0.1f, 0.9f},
240 { 0, 0, 1, 1}, {}, {}, data_split_mode),
242 auto expected = 10.0f;
246 EXPECT_NEAR(GetMetricEval(metric,
247 {0.1f, 0.9f, 0.1f, 0.9f},
249 { -1, 1, 9, -9}, {}, data_split_mode),
251 EXPECT_NEAR(GetMetricEval(metric,
252 {0.1f, 0.9f, 0.1f, 0.9f},
254 { 1, 2, 9, 8}, {}, data_split_mode),
262 EXPECT_STREQ(metric->
Name(),
"error");
268 ASSERT_STREQ(metric->
Name(),
"error@0.1");
269 EXPECT_STREQ(metric->
Name(),
"error@0.1");
270 EXPECT_NEAR(GetMetricEval(metric, {0, 1}, {0, 1}, {}, {}, data_split_mode), 0, 1e-10);
271 EXPECT_NEAR(GetMetricEval(metric,
272 {-0.1f, -0.9f, 0.1f, 0.9f},
273 { 0, 0, 1, 1}, {}, {}, data_split_mode),
279 EXPECT_NEAR(GetMetricEval(metric,
280 {-0.1f, -0.9f, 0.1f, 0.9f},
282 { -1, 1, 9, -9}, {}, data_split_mode),
284 EXPECT_NEAR(GetMetricEval(metric,
285 {-0.1f, -0.9f, 0.1f, 0.9f},
287 { 1, 2, 9, 8}, {}, data_split_mode),
291 CheckDeterministicMetricElementWise(StringView{
"error@0.5"}, GPUIDX);
294inline void VerifyPoissonNegLogLik(DataSplitMode data_split_mode = DataSplitMode::kRow) {
298 ASSERT_STREQ(metric->
Name(),
"poisson-nloglik");
299 EXPECT_NEAR(GetMetricEval(metric, {0, 1}, {0, 1}, {}, {}, data_split_mode), 0.5f, 1e-10);
300 EXPECT_NEAR(GetMetricEval(metric,
301 {0.5f, 1e-17f, 1.0f+1e-17f, 0.9f},
302 { 0, 0, 1, 1}, {}, {}, data_split_mode),
304 EXPECT_NEAR(GetMetricEval(metric,
305 {0.1f, 0.9f, 0.1f, 0.9f},
306 { 0, 0, 1, 1}, {}, {}, data_split_mode),
308 auto expected = 13.3750f;
312 EXPECT_NEAR(GetMetricEval(metric,
313 {0.1f, 0.9f, 0.1f, 0.9f},
315 { -1, 1, 9, -9}, {}, data_split_mode),
317 EXPECT_NEAR(GetMetricEval(metric,
318 {0.1f, 0.9f, 0.1f, 0.9f},
320 { 1, 2, 9, 8}, {}, data_split_mode),
324 CheckDeterministicMetricElementWise(StringView{
"poisson-nloglik"}, GPUIDX);
327inline void VerifyMultiRMSE(DataSplitMode data_split_mode = DataSplitMode::kRow) {
328 size_t n_samples = 32, n_targets = 8;
329 linalg::Tensor<float, 2> y{{n_samples, n_targets}, GPUIDX};
330 auto &h_y = y.Data()->HostVector();
331 std::iota(h_y.begin(), h_y.end(), 0);
333 HostDeviceVector<float> predt(n_samples * n_targets, 0);
339 auto loss = GetMultiMetricEval(metric.get(), predt, y, {}, {}, data_split_mode);
340 std::vector<float> weights(n_samples, 1);
341 auto loss_w = GetMultiMetricEval(metric.get(), predt, y, weights, {}, data_split_mode);
343 std::transform(h_y.cbegin(), h_y.cend(), h_y.begin(), [](
auto &v) { return v * v; });
344 auto ret = std::sqrt(std::accumulate(h_y.cbegin(), h_y.cend(), 1.0, std::plus<>{}) / h_y.size());
345 ASSERT_FLOAT_EQ(ret, loss);
346 ASSERT_FLOAT_EQ(ret, loss_w);
349inline void VerifyQuantile(DataSplitMode data_split_mode = DataSplitMode::kRow) {
353 HostDeviceVector<float> predts{0.1f, 0.9f, 0.1f, 0.9f};
354 std::vector<float> labels{0.5f, 0.5f, 0.9f, 0.1f};
355 std::vector<float> weights{0.2f, 0.4f, 0.6f, 0.8f};
357 metric->
Configure(Args{{
"quantile_alpha",
"[0.0]"}});
358 EXPECT_NEAR(GetMetricEval(metric.get(), predts, labels, weights, {}, data_split_mode), 0.400f,
360 metric->
Configure(Args{{
"quantile_alpha",
"[0.2]"}});
361 EXPECT_NEAR(GetMetricEval(metric.get(), predts, labels, weights, {}, data_split_mode), 0.376f,
363 metric->
Configure(Args{{
"quantile_alpha",
"[0.4]"}});
364 EXPECT_NEAR(GetMetricEval(metric.get(), predts, labels, weights, {}, data_split_mode), 0.352f,
366 metric->
Configure(Args{{
"quantile_alpha",
"[0.8]"}});
367 EXPECT_NEAR(GetMetricEval(metric.get(), predts, labels, weights, {}, data_split_mode), 0.304f,
369 metric->
Configure(Args{{
"quantile_alpha",
"[1.0]"}});
370 EXPECT_NEAR(GetMetricEval(metric.get(), predts, labels, weights, {}, data_split_mode), 0.28f,
373 metric->
Configure(Args{{
"quantile_alpha",
"[0.0]"}});
374 EXPECT_NEAR(GetMetricEval(metric.get(), predts, labels, {}, {}, data_split_mode), 0.3f, 0.001f);
375 metric->
Configure(Args{{
"quantile_alpha",
"[0.2]"}});
376 EXPECT_NEAR(GetMetricEval(metric.get(), predts, labels, {}, {}, data_split_mode), 0.3f, 0.001f);
377 metric->
Configure(Args{{
"quantile_alpha",
"[0.4]"}});
378 EXPECT_NEAR(GetMetricEval(metric.get(), predts, labels, {}, {}, data_split_mode), 0.3f, 0.001f);
379 metric->
Configure(Args{{
"quantile_alpha",
"[0.8]"}});
380 EXPECT_NEAR(GetMetricEval(metric.get(), predts, labels, {}, {}, data_split_mode), 0.3f, 0.001f);
381 metric->
Configure(Args{{
"quantile_alpha",
"[1.0]"}});
382 EXPECT_NEAR(GetMetricEval(metric.get(), predts, labels, {}, {}, data_split_mode), 0.3f, 0.001f);
interface of evaluation metric used to evaluate model performance. This has nothing to do with traini...
Definition metric.h:29
static Metric * Create(const std::string &name, Context const *ctx)
create a metric according to name.
Definition metric.cc:46
virtual void Configure(const std::vector< std::pair< std::string, std::string > > &)
Configure the Metric with the specified parameters.
Definition metric.h:38
virtual const char * Name() const =0
int GetWorldSize()
Get total number of processes.
Definition communicator-inl.h:83
bool IsDistributed()
Get if the communicator is distributed.
Definition communicator-inl.h:90
namespace of xgboost
Definition base.h:90
Context MakeCUDACtx(std::int32_t device)
Make a context that uses CUDA if device >= 0.
Definition helpers.h:410
Copyright 2014-2023 by XGBoost Contributors.