6#ifndef XGBOOST_LINEAR_PARAM_H_
7#define XGBOOST_LINEAR_PARAM_H_
34 .set_lower_bound(0.0f)
36 .describe(
"Learning rate of each update.");
38 .set_lower_bound(0.0f)
40 .describe(
"L2 regularization on weights.");
42 .set_lower_bound(0.0f)
44 .describe(
"L1 regularization on weights.");
45 DMLC_DECLARE_FIELD(feature_selector)
47 .add_enum(
"cyclic", kCyclic)
48 .add_enum(
"shuffle", kShuffle)
49 .add_enum(
"thrifty", kThrifty)
50 .add_enum(
"greedy", kGreedy)
51 .add_enum(
"random", kRandom)
52 .describe(
"Feature selection or ordering method.");
60 reg_lambda_denorm =
reg_lambda * sum_instance_weight;
61 reg_alpha_denorm =
reg_alpha * sum_instance_weight;
64 float reg_lambda_denorm;
65 float reg_alpha_denorm;
macro for using C++11 enum class as DMLC parameter
FeatureSelectorEnum
A set of available FeatureSelector's.
Definition param.h:15
namespace of xgboost
Definition base.h:90
Definition parameter.h:84
float learning_rate
learning_rate
Definition param.h:25
float reg_alpha
regularization weight for L1 norm
Definition param.h:29
float reg_lambda
regularization weight for L2 norm
Definition param.h:27
void DenormalizePenalties(double sum_instance_weight)
Denormalizes the regularization penalties - to be called at each update.
Definition param.h:59