6#ifndef XGBOOST_LINALG_H_
7#define XGBOOST_LINALG_H_
13#include <xgboost/json.h>
14#include <xgboost/span.h>
33#if defined(__CUDA__) || defined(__NVCC__)
34#define LINALG_HD __host__ __device__
45 static constexpr char TypeChar() {
46 return (std::is_floating_point<T>::value
48 : (std::is_integral<T>::value ? (std::is_signed<T>::value ?
'i' :
'u') :
'\0'));
52template <
size_t dim,
typename S,
typename Head,
size_t D>
53constexpr size_t Offset(S (&strides)[D],
size_t n, Head head) {
54 static_assert(dim < D);
55 return n + head * strides[dim];
58template <
size_t dim,
typename S,
size_t D,
typename Head,
typename... Tail>
59constexpr std::enable_if_t<
sizeof...(Tail) != 0,
size_t> Offset(S (&strides)[D],
size_t n,
60 Head head, Tail &&...rest) {
61 static_assert(dim < D);
62 return Offset<dim + 1>(strides, n + (head * strides[dim]), std::forward<Tail>(rest)...);
65template <
int32_t D,
bool f_array = false>
66constexpr void CalcStride(
size_t const (&shape)[D],
size_t (&stride)[D]) {
69 for (int32_t s = 1; s < D; ++s) {
70 stride[s] = shape[s - 1] * stride[s - 1];
74 for (int32_t s = D - 2; s >= 0; --s) {
75 stride[s] = shape[s + 1] * stride[s + 1];
88 [[nodiscard]]
constexpr size_t Size()
const {
return end - beg; }
96 return std::is_same<T, IntTag>::value ? 0 : 1;
99template <
typename T,
typename... S>
100constexpr std::enable_if_t<
sizeof...(S) != 0, int32_t> CalcSliceDim() {
101 return CalcSliceDim<T>() + CalcSliceDim<S...>();
105constexpr size_t CalcSize(
size_t (&shape)[D]) {
107 for (
auto d : shape) {
114using RemoveCRType = std::remove_const_t<std::remove_reference_t<S>>;
117using IndexToTag = std::conditional_t<std::is_integral<RemoveCRType<S>>::value, IntTag, S>;
119template <
int32_t n,
typename Fn>
120LINALG_HD
constexpr auto UnrollLoop(Fn fn) {
121#if defined __CUDA_ARCH__
124 for (int32_t i = 0; i < n; ++i) {
130int32_t NativePopc(T v) {
132 for (; v != 0; v &= v - 1) c++;
136inline LINALG_HD
int Popc(uint32_t v) {
137#if defined(__CUDA_ARCH__)
139#elif defined(__GNUC__) || defined(__clang__)
140 return __builtin_popcount(v);
141#elif defined(_MSC_VER)
144 return NativePopc(v);
148inline LINALG_HD
int Popc(uint64_t v) {
149#if defined(__CUDA_ARCH__)
151#elif defined(__GNUC__) || defined(__clang__)
152 return __builtin_popcountll(v);
153#elif defined(_MSC_VER) && defined(_M_X64)
154 return __popcnt64(v);
156 return NativePopc(v);
160template <std::
size_t D,
typename Head>
161LINALG_HD
void IndexToArr(std::size_t (&arr)[D], Head head) {
162 static_assert(std::is_integral<std::remove_reference_t<Head>>::value,
"Invalid index type.");
169template <std::size_t D,
typename Head,
typename... Rest>
170LINALG_HD
void IndexToArr(std::size_t (&arr)[D], Head head, Rest &&...index) {
171 static_assert(
sizeof...(Rest) < D,
"Index overflow.");
172 static_assert(std::is_integral<std::remove_reference_t<Head>>::value,
"Invalid index type.");
173 arr[D -
sizeof...(Rest) - 1] = head;
174 IndexToArr(arr, std::forward<Rest>(index)...);
177template <
class T, std::size_t N, std::size_t... Idx>
178constexpr auto ArrToTuple(T (&arr)[N], std::index_sequence<Idx...>) {
179 return std::make_tuple(arr[Idx]...);
185template <
class T, std::
size_t N>
186constexpr auto ArrToTuple(T (&arr)[N]) {
187 return ArrToTuple(arr, std::make_index_sequence<N>{});
193template <
typename I,
int32_t D>
196 static_assert(std::is_signed<
decltype(D)>::value,
197 "Don't change the type without changing the for loop.");
198 for (int32_t dim = D; --dim > 0;) {
199 auto s =
static_cast<std::remove_const_t<std::remove_reference_t<I>
>>(shape[dim]);
202 index[dim] = idx - t * s;
205 index[dim] = idx & (s - 1);
210 return ArrToTuple(index);
213template <
size_t dim,
typename I,
int32_t D>
214void ReshapeImpl(
size_t (&out_shape)[D], I s) {
215 static_assert(dim < D);
219template <
size_t dim, int32_t D,
typename... S,
typename I,
220 std::enable_if_t<
sizeof...(S) != 0> * =
nullptr>
221void ReshapeImpl(
size_t (&out_shape)[D], I &&s, S &&...rest) {
222 static_assert(dim < D);
224 ReshapeImpl<dim + 1>(out_shape, std::forward<S>(rest)...);
227template <
typename Fn,
typename Tup,
size_t... I>
228LINALG_HD
decltype(
auto)
constexpr Apply(Fn &&f, Tup &&t, std::index_sequence<I...>) {
229 return f(std::get<I>(t)...);
238template <
typename Fn,
typename Tup>
239LINALG_HD
decltype(
auto)
constexpr Apply(Fn &&f, Tup &&t) {
240 constexpr auto kSize = std::tuple_size<Tup>::value;
241 return Apply(std::forward<Fn>(f), std::forward<Tup>(t), std::make_index_sequence<kSize>{});
251template <
class B1,
class... Bn>
253 : std::conditional_t<static_cast<bool>(B1::value), Conjunction<Bn...>, B1> {};
255template <
typename... Index>
258template <
typename... Index>
259using EnableIfIntegral = std::enable_if_t<
IsAllIntegral<Index...>::value>;
274enum Order : std::uint8_t {
292template <
typename T,
int32_t kDim>
295 using ShapeT =
size_t[kDim];
296 using StrideT = ShapeT;
308 LINALG_HD
void CalcSize() {
312 size_ = detail::CalcSize(shape_);
316 template <
size_t old_dim,
size_t new_dim,
int32_t D,
typename I>
317 LINALG_HD
size_t MakeSliceDim(
size_t new_shape[D],
size_t new_stride[D],
319 static_assert(new_dim < D);
320 static_assert(old_dim < kDim);
321 new_stride[new_dim] = stride_[old_dim];
322 new_shape[new_dim] = range.Size();
323 assert(
static_cast<decltype(shape_[old_dim])
>(range.end) <= shape_[old_dim]);
325 auto offset = stride_[old_dim] * range.beg;
331 template <
size_t old_dim,
size_t new_dim, int32_t D,
typename I,
typename... S>
332 LINALG_HD
size_t MakeSliceDim(
size_t new_shape[D],
size_t new_stride[D],
334 static_assert(new_dim < D);
335 static_assert(old_dim < kDim);
336 new_stride[new_dim] = stride_[old_dim];
337 new_shape[new_dim] = range.Size();
338 assert(
static_cast<decltype(shape_[old_dim])
>(range.end) <= shape_[old_dim]);
340 auto offset = stride_[old_dim] * range.beg;
341 return MakeSliceDim<old_dim + 1, new_dim + 1, D>(new_shape, new_stride,
342 std::forward<S>(slices)...) +
346 template <
size_t old_dim,
size_t new_dim,
int32_t D>
347 LINALG_HD
size_t MakeSliceDim(
size_t new_shape[D],
size_t new_stride[D],
detail::AllTag)
const {
348 static_assert(new_dim < D);
349 static_assert(old_dim < kDim);
350 new_stride[new_dim] = stride_[old_dim];
351 new_shape[new_dim] = shape_[old_dim];
357 template <
size_t old_dim,
size_t new_dim, int32_t D,
typename... S>
358 LINALG_HD
size_t MakeSliceDim(
size_t new_shape[D],
size_t new_stride[D],
detail::AllTag,
359 S &&...slices)
const {
360 static_assert(new_dim < D);
361 static_assert(old_dim < kDim);
362 new_stride[new_dim] = stride_[old_dim];
363 new_shape[new_dim] = shape_[old_dim];
364 return MakeSliceDim<old_dim + 1, new_dim + 1, D>(new_shape, new_stride,
365 std::forward<S>(slices)...);
368 template <
size_t old_dim,
size_t new_dim,
int32_t D,
typename Index>
371 static_assert(old_dim < kDim);
372 return stride_[old_dim] * i;
377 template <
size_t old_dim,
size_t new_dim, int32_t D,
typename Index,
typename... S>
378 LINALG_HD std::enable_if_t<std::is_integral<Index>::value,
size_t> MakeSliceDim(
379 size_t new_shape[D],
size_t new_stride[D], Index i, S &&...slices)
const {
380 static_assert(old_dim < kDim);
381 auto offset = stride_[old_dim] * i;
383 MakeSliceDim<old_dim + 1, new_dim, D>(new_shape, new_stride, std::forward<S>(slices)...);
388 size_t constexpr static kValueSize =
sizeof(T);
389 size_t constexpr static kDimension = kDim;
403 template <
typename I,
int32_t D>
405 :
TensorView{data, shape, device, Order::kC} {}
407 template <
typename I,
int32_t D>
409 : data_{data}, ptr_{data_.data()}, device_{device} {
410 static_assert(D > 0 && D <= kDim,
"Invalid shape.");
412 detail::UnrollLoop<D>([&](
auto i) { shape_[i] = shape[i]; });
413 for (
auto i = D; i < kDim; ++i) {
419 detail::CalcStride(shape_, stride_);
423 detail::CalcStride<kDim, true>(shape_, stride_);
438 template <
typename I, std::
int32_t D>
441 : data_{data}, ptr_{data_.data()}, device_{device} {
442 static_assert(D == kDim,
"Invalid shape & stride.");
443 detail::UnrollLoop<D>([&](
auto i) {
444 shape_[i] = shape[i];
445 stride_[i] = stride[i];
452 std::enable_if_t<common::detail::IsAllowedElementTypeConversion<U, T>::value> * =
nullptr>
454 : data_{that.
Values()}, ptr_{data_.data()}, size_{that.
Size()}, device_{that.
DeviceIdx()} {
455 detail::UnrollLoop<kDim>([&](
auto i) {
456 stride_[i] = that.Stride(i);
457 shape_[i] = that.Shape(i);
474 template <
typename... Index, detail::EnableIfIntegral<Index...> * =
nullptr>
476 static_assert(
sizeof...(index) <= kDim,
"Invalid index.");
477 size_t offset = detail::Offset<0ul>(stride_, 0ul, std::forward<Index>(index)...);
478 assert(offset < data_.size() &&
"Out of bound access.");
484 template <
typename... Index, detail::EnableIfIntegral<Index...> * =
nullptr>
486 static_assert(
sizeof...(index) <= kDim,
"Invalid index.");
487 size_t offset = detail::Offset<0ul>(stride_, 0ul, std::forward<Index>(index)...);
488 assert(offset < data_.size() &&
"Out of bound access.");
505 template <
typename... S>
506 LINALG_HD
auto Slice(S &&...slices)
const {
507 static_assert(
sizeof...(slices) <= kDim,
"Invalid slice.");
508 int32_t
constexpr kNewDim{detail::CalcSliceDim<detail::IndexToTag<S>...>()};
509 size_t new_shape[kNewDim];
510 size_t new_stride[kNewDim];
511 auto offset = MakeSliceDim<0, 0, kNewDim>(new_shape, new_stride, std::forward<S>(slices)...);
523 LINALG_HD
auto Shape(
size_t i)
const {
return shape_[i]; }
528 LINALG_HD
auto Stride(
size_t i)
const {
return stride_[i]; }
533 [[nodiscard]] LINALG_HD std::size_t
Size()
const {
return size_; }
545 static_assert(std::is_same<
decltype(stride),
decltype(stride_)>::value);
547 detail::CalcStride(shape_, stride);
555 static_assert(std::is_same<
decltype(stride),
decltype(stride_)>::value);
557 detail::CalcStride<kDim, true>(shape_, stride);
563 LINALG_HD
auto Values() const -> decltype(data_) const & {
return data_; }
573template <
typename Container,
typename... S,
574 std::enable_if_t<!common::detail::IsSpan<Container>::value &&
575 !std::is_pointer_v<Container>> * =
nullptr>
577 using T = std::conditional_t<std::is_const_v<Container>,
578 std::add_const_t<typename Container::value_type>,
579 typename Container::value_type>;
580 std::size_t in_shape[
sizeof...(S)];
581 detail::IndexToArr(in_shape, std::forward<S>(shape)...);
582 return TensorView<T,
sizeof...(S)>{data, in_shape, ctx->gpu_id};
585template <
typename T,
typename... S>
587 std::size_t in_shape[
sizeof...(S)];
588 detail::IndexToArr(in_shape, std::forward<S>(shape)...);
589 return TensorView<T,
sizeof...(S)>{data, in_shape, device};
592template <
typename T,
typename... S>
593auto MakeTensorView(Context
const *ctx, common::Span<T> data, S &&...shape) {
594 return MakeTensorView(ctx->gpu_id, data, std::forward<S>(shape)...);
597template <
typename T,
typename... S>
598auto MakeTensorView(Context
const *ctx, HostDeviceVector<T> *data, S &&...shape) {
599 auto span = ctx->
IsCPU() ? data->HostSpan() : data->DeviceSpan();
600 return MakeTensorView(ctx->gpu_id, span, std::forward<S>(shape)...);
603template <
typename T,
typename... S>
604auto MakeTensorView(Context
const *ctx, HostDeviceVector<T>
const *data, S &&...shape) {
605 auto span = ctx->
IsCPU() ? data->ConstHostSpan() : data->ConstDeviceSpan();
606 return MakeTensorView(ctx->gpu_id, span, std::forward<S>(shape)...);
614 if (idx > std::numeric_limits<uint32_t>::max()) {
615 return detail::UnravelImpl<uint64_t, D>(
static_cast<uint64_t
>(idx), shape);
617 return detail::UnravelImpl<uint32_t, D>(
static_cast<uint32_t
>(idx), shape);
622LINALG_HD
auto UnravelIndex(
size_t idx, std::size_t
const (&shape)[D]) {
626template <
typename... S>
627LINALG_HD
auto UnravelIndex(std::size_t idx, S... shape) {
628 std::size_t s[
sizeof...(S)];
629 detail::IndexToArr(s, shape...);
630 return UnravelIndex(idx, common::Span<std::size_t
const,
sizeof...(S)>(s));
649auto MakeVec(T *ptr,
size_t s, int32_t device = -1) {
655 return MakeVec(data->DeviceIdx() == -1 ? data->HostPointer() : data->DevicePointer(),
656 data->Size(), data->DeviceIdx());
660auto MakeVec(HostDeviceVector<T>
const *data) {
661 return MakeVec(data->DeviceIdx() == -1 ? data->ConstHostPointer() : data->ConstDevicePointer(),
662 data->Size(), data->DeviceIdx());
679template <
typename T,
int32_t D>
682 array_interface[
"data"] = std::vector<Json>(2);
683 array_interface[
"data"][0] =
Integer{
reinterpret_cast<int64_t
>(t.
Values().data())};
684 array_interface[
"data"][1] =
Boolean{
true};
687 array_interface[
"stream"] =
Null{};
689 std::vector<Json> shape(t.Shape().size());
690 std::vector<Json> stride(t.Stride().size());
691 for (
size_t i = 0; i < t.Shape().size(); ++i) {
692 shape[i] =
Integer(t.Shape(i));
693 stride[i] =
Integer(t.Stride(i) *
sizeof(T));
695 array_interface[
"shape"] =
Array{shape};
696 array_interface[
"strides"] =
Array{stride};
697 array_interface[
"version"] = 3;
699 char constexpr kT = detail::ArrayInterfaceHandler::TypeChar<T>();
700 static_assert(kT !=
'\0');
701 if (DMLC_LITTLE_ENDIAN) {
702 array_interface[
"typestr"] =
String{
"<" + (kT + std::to_string(
sizeof(T)))};
704 array_interface[
"typestr"] =
String{
">" + (kT + std::to_string(
sizeof(T)))};
706 return array_interface;
712template <
typename T,
int32_t D>
716 res[
"data"][1] =
Boolean{
false};
723template <
typename T,
int32_t D>
730template <
typename T,
int32_t D>
741template <
typename T,
int32_t kDim = 5>
744 using ShapeT =
size_t[kDim];
745 using StrideT = ShapeT;
750 Order order_{Order::kC};
752 template <
typename I, std::
int32_t D>
753 void Initialize(I
const (&shape)[D], std::int32_t device) {
754 static_assert(D <= kDim,
"Invalid shape.");
755 std::copy(shape, shape + D, shape_);
756 for (
auto i = D; i < kDim; ++i) {
760 data_.SetDevice(device);
761 data_.ConstDevicePointer();
763 CHECK_EQ(data_.Size(), detail::CalcSize(shape_));
775 template <
typename I,
int32_t D>
776 explicit Tensor(I
const (&shape)[D], std::int32_t device, Order order = kC)
777 :
Tensor{common::Span<I const, D>{shape}, device, order} {}
779 template <
typename I,
size_t D>
780 explicit Tensor(common::Span<I const, D> shape, std::int32_t device, Order order = kC)
783 std::copy(shape.data(), shape.data() + D, shape_);
784 for (
auto i = D; i < kDim; ++i) {
787 auto size = detail::CalcSize(shape_);
789 data_.SetDevice(device);
793 data_.DevicePointer();
799 template <
typename It,
typename I,
int32_t D>
800 explicit Tensor(It begin, It end, I
const (&shape)[D], std::int32_t device, Order order = kC)
802 auto &h_vec = data_.HostVector();
803 h_vec.insert(h_vec.begin(), begin, end);
805 this->Initialize(shape, device);
808 template <
typename I,
int32_t D>
809 explicit Tensor(std::initializer_list<T> data, I
const (&shape)[D], std::int32_t device,
812 auto &h_vec = data_.HostVector();
815 this->Initialize(shape, device);
821 template <
typename... Index>
823 return this->HostView()(std::forward<Index>(idx)...);
829 template <
typename... Index>
831 return this->HostView()(std::forward<Index>(idx)...);
839 data_.SetDevice(device);
840 auto span = data_.DeviceSpan();
841 return {span, shape_, device, order_};
843 auto span = data_.HostSpan();
844 return {span, shape_, device, order_};
849 data_.SetDevice(device);
850 auto span = data_.ConstDeviceSpan();
851 return {span, shape_, device, order_};
853 auto span = data_.ConstHostSpan();
854 return {span, shape_, device, order_};
858 auto HostView()
const {
return this->View(-1); }
859 auto HostView() {
return this->View(-1); }
861 [[nodiscard]]
size_t Size()
const {
return data_.Size(); }
862 auto Shape()
const {
return common::Span<size_t const, kDim>{shape_}; }
863 auto Shape(
size_t i)
const {
return shape_[i]; }
865 HostDeviceVector<T> *Data() {
return &data_; }
866 HostDeviceVector<T>
const *Data()
const {
return &data_; }
874 template <
typename Fn>
877 CHECK_EQ(this->Data()->Size(), detail::CalcSize(this->shape_))
878 <<
"Inconsistent size after modification.";
886 template <
typename... S, detail::EnableIfIntegral<S...> * =
nullptr>
888 static_assert(
sizeof...(S) <= kDim,
"Invalid shape.");
889 detail::ReshapeImpl<0>(shape_, std::forward<S>(s)...);
890 auto constexpr kEnd =
sizeof...(S);
891 static_assert(kEnd <= kDim,
"Invalid shape.");
892 std::fill(shape_ + kEnd, shape_ + kDim, 1);
893 auto n = detail::CalcSize(shape_);
904 static_assert(D <= kDim,
"Invalid shape.");
905 std::copy(shape.data(), shape.data() + D, this->shape_);
906 std::fill(shape_ + D, shape_ + kDim, 1);
907 auto n = detail::CalcSize(shape_);
912 void Reshape(
size_t (&shape)[D]) {
918 template <
typename... S>
920 return this->HostView().Slice(std::forward<S>(slices)...);
925 template <
typename... S>
927 return this->HostView().Slice(std::forward<S>(slices)...);
933 void SetDevice(int32_t device)
const { data_.SetDevice(device); }
934 [[nodiscard]] int32_t DeviceIdx()
const {
return data_.DeviceIdx(); }
938using Matrix = Tensor<T, 2>;
941using Vector = Tensor<T, 1>;
946template <
typename T,
typename... Index>
948 Tensor<T,
sizeof...(Index)> t;
949 t.SetDevice(ctx->gpu_id);
957template <
typename T,
typename... Index>
959 Tensor<T,
sizeof...(Index)> t;
960 t.SetDevice(ctx->gpu_id);
962 t.Data()->Fill(std::move(v));
969template <
typename T,
typename... Index>
971 return Constant(ctx,
static_cast<T
>(0), index...);
975template <
typename T,
int32_t D>
976void Stack(Tensor<T, D> *l, Tensor<T, D>
const &r) {
977 if (r.DeviceIdx() >= 0) {
978 l->SetDevice(r.DeviceIdx());
980 l->ModifyInplace([&](HostDeviceVector<T> *data, common::Span<size_t, D> shape) {
981 for (
size_t i = 1; i < D; ++i) {
983 shape[i] = r.Shape(i);
985 CHECK_EQ(shape[i], r.Shape(i));
988 data->Extend(*r.Data());
989 shape[0] = l->Shape(0) + r.Shape(0);
994#if defined(LINALG_HD)
A type erased view over array_interface protocol defined by numpy.
Definition array_interface.h:388
Definition host_device_vector.h:87
Describes both true and false.
Definition json.h:312
Data structure representing JSON format.
Definition json.h:357
static void Dump(Json json, std::string *out, std::ios::openmode mode=std::ios::out)
Encode the JSON object.
Definition json.cc:669
span class implementation, based on ISO++20 span<T>. The interface should be the same.
Definition span.h:424
XGBOOST_DEVICE auto subspan() const -> Span< element_type, detail::ExtentValue< Extent, Offset, Count >::value >
Definition span.h:596
A tensor view with static type and dimension.
Definition linalg.h:293
LINALG_HD auto DeviceIdx() const
Obtain the CUDA device ordinal.
Definition linalg.h:567
LINALG_HD std::size_t Size() const
Number of items in the tensor.
Definition linalg.h:533
LINALG_HD bool CContiguous() const
Whether it's a c-contiguous array.
Definition linalg.h:543
LINALG_HD auto Stride(size_t i) const
Get the stride for i^th dimension, stride is specified as number of items instead of bytes.
Definition linalg.h:528
LINALG_HD auto Slice(S &&...slices) const
Slice the tensor.
Definition linalg.h:506
LINALG_HD auto Values() const -> decltype(data_) const &
Obtain a reference to the raw data.
Definition linalg.h:563
LINALG_HD bool Contiguous() const
Whether this is a contiguous array, both C and F contiguous returns true.
Definition linalg.h:537
LINALG_HD T & operator()(Index &&...index)
Index the tensor to obtain a scalar value.
Definition linalg.h:475
LINALG_HD TensorView(common::Span< T > data, I const (&shape)[D], std::int32_t device)
Create a tensor with data and shape.
Definition linalg.h:404
LINALG_HD bool FContiguous() const
Whether it's a f-contiguous array.
Definition linalg.h:553
LINALG_HD auto Shape(size_t i) const
Get the shape for i^th dimension.
Definition linalg.h:523
LINALG_HD TensorView(common::Span< T > data, I const (&shape)[D], I const (&stride)[D], std::int32_t device)
Create a tensor with data, shape and strides.
Definition linalg.h:439
LINALG_HD T const & operator()(Index &&...index) const
Index the tensor to obtain a scalar value.
Definition linalg.h:485
A tensor storage.
Definition linalg.h:742
auto Slice(S &&...slices)
Get a host view on the slice.
Definition linalg.h:926
auto Slice(S &&...slices) const
Get a host view on the slice.
Definition linalg.h:919
void SetDevice(int32_t device) const
Set device ordinal for this tensor.
Definition linalg.h:933
Tensor(I const (&shape)[D], std::int32_t device, Order order=kC)
Create a tensor with shape and device ordinal.
Definition linalg.h:776
T & operator()(Index &&...idx)
Index operator.
Definition linalg.h:822
void ModifyInplace(Fn &&fn)
Visitor function for modification that changes shape and data.
Definition linalg.h:875
T const & operator()(Index &&...idx) const
Index operator.
Definition linalg.h:830
void Reshape(common::Span< size_t const, D > shape)
Reshape the tensor.
Definition linalg.h:903
void Reshape(S &&...s)
Reshape the tensor.
Definition linalg.h:887
TensorView< T, kDim > View(int32_t device)
Get a TensorView for this tensor.
Definition linalg.h:837
Tensor(It begin, It end, I const (&shape)[D], std::int32_t device, Order order=kC)
Initialize from 2 host iterators.
Definition linalg.h:800
Copyright 2014-2023, XGBoost Contributors.
#define DMLC_ATTRIBUTE_UNUSED
helper macro to supress unused warning
Definition base.h:170
Endian testing, need c++11.
A device-and-host vector abstraction layer.
Copyright 2015-2023 by XGBoost Contributors.
constexpr int32_t CalcSliceDim()
Calculate the dimension of sliced tensor.
Definition linalg.h:95
detail namespace with internal helper functions
Definition json.hpp:249
Copyright 2021-2023 by XGBoost Contributors.
Definition linalg.h:40
auto MakeVec(T *ptr, size_t s, int32_t device=-1)
Create a vector view from contigious memory.
Definition linalg.h:649
auto MakeTensorView(Context const *ctx, Container &data, S &&...shape)
Constructor for automatic type deduction.
Definition linalg.h:576
auto ArrayInterfaceStr(TensorView< T const, D > const &t)
Return string representation of array interface.
Definition linalg.h:724
LINALG_HD auto UnravelIndex(size_t idx, common::Span< size_t const, D > shape)
Turns linear index into multi-dimension index.
Definition linalg.h:613
auto Constant(Context const *ctx, T v, Index &&...index)
Create an array with value v.
Definition linalg.h:958
auto Zeros(Context const *ctx, Index &&...index)
Like np.zeros, return a new array of given shape and type, filled with zeros.
Definition linalg.h:970
constexpr detail::RangeTag< I > Range(I beg, I end)
Specify a range of elements in the axis for slicing.
Definition linalg.h:270
auto Empty(Context const *ctx, Index &&...index)
Create an array without initialization.
Definition linalg.h:947
constexpr detail::AllTag All()
Specify all elements in the axis for slicing.
Definition linalg.h:265
Definition inference.c:32
Runtime context for XGBoost.
Definition context.h:84
bool IsCPU() const
Is XGBoost running on CPU?
Definition context.h:133
C++ 17 conjunction.
Definition linalg.h:248