8#ifndef XGBOOST_LEARNER_H_
9#define XGBOOST_LEARNER_H_
17#include <xgboost/span.h>
18#include <xgboost/task.h>
35struct XGBAPIThreadLocalEntry;
37class HostDeviceVector;
39enum class PredictionType : std::uint8_t {
43 kApproxContribution = 3,
45 kApproxInteraction = 5,
79 virtual void UpdateOneIter(
int iter, std::shared_ptr<DMatrix> train) = 0;
88 std::shared_ptr<DMatrix> train,
98 const std::vector<std::shared_ptr<DMatrix>>& data_sets,
99 const std::vector<std::string>& data_names) = 0;
113 virtual void Predict(std::shared_ptr<DMatrix> data,
bool output_margin,
115 bst_layer_t layer_end,
bool training =
false,
bool pred_leaf =
false,
116 bool pred_contribs =
false,
bool approx_contribs =
false,
117 bool pred_interactions =
false) = 0;
129 virtual void InplacePredict(std::shared_ptr<DMatrix> p_m, PredictionType type,
float missing,
138 std::vector<bst_feature_t>* features,
139 std::vector<float>* scores) = 0;
144 virtual int32_t BoostedRounds()
const = 0;
148 virtual std::uint32_t
Groups()
const = 0;
170 virtual void SetParam(
const std::string& key,
const std::string& value) = 0;
186 virtual void SetAttr(
const std::string& key,
const std::string& value) = 0;
194 virtual bool GetAttr(
const std::string& key, std::string* out)
const = 0;
200 virtual bool DelAttr(
const std::string& key) = 0;
238 bool* out_of_bound) = 0;
248 std::string format) = 0;
256 static Learner*
Create(
const std::vector<std::shared_ptr<DMatrix> >& cache_data);
269 std::unique_ptr<ObjFunction>
obj_;
271 std::unique_ptr<GradientBooster>
gbm_;
284 kOneOutputPerTree = 0,
285 kMultiOutputTree = 1,
326 : base_score_{
std::move(base_score)},
331 linalg::TensorView<float const, 1> BaseScore(Context
const* ctx)
const;
332 [[nodiscard]] linalg::TensorView<float const, 1> BaseScore(std::int32_t device)
const;
334 void Copy(LearnerModelParam
const& that);
335 [[nodiscard]]
bool IsVectorLeaf() const noexcept {
339 [[nodiscard]]
bst_target_t LeafLength() const noexcept {
340 return this->IsVectorLeaf() ? this->OutputLength() : 1;
interface for serializable objects
Definition io.h:132
interface of stream I/O for serialization
Definition io.h:30
Feature map data structure to help text model dump. TODO(tqchen) consider make it even more lightweig...
Definition feature_map.h:22
Definition host_device_vector.h:87
Data structure representing JSON format.
Definition json.h:357
Learner class that does training and prediction. This is the user facing module of xgboost training....
Definition learner.h:65
virtual void InplacePredict(std::shared_ptr< DMatrix > p_m, PredictionType type, float missing, HostDeviceVector< float > **out_preds, bst_layer_t layer_begin, bst_layer_t layer_end)=0
Inplace prediction.
virtual void SetParam(const std::string &key, const std::string &value)=0
Set parameter for booster.
virtual std::vector< std::string > DumpModel(const FeatureMap &fmap, bool with_stats, std::string format)=0
dump the model in the requested format
std::vector< std::unique_ptr< Metric > > metrics_
The evaluation metrics used to evaluate the model.
Definition learner.h:273
virtual void CalcFeatureScore(std::string const &importance_type, common::Span< int32_t const > trees, std::vector< bst_feature_t > *features, std::vector< float > *scores)=0
Calculate feature score. See doc in C API for outputs.
virtual Context const * Ctx() const =0
Return the context object of this Booster.
virtual const std::map< std::string, std::string > & GetConfigurationArguments() const =0
Get configuration arguments currently stored by the learner.
~Learner() override
virtual destructor
virtual void SetFeatureNames(std::vector< std::string > const &fn)=0
Set the feature names for current booster.
virtual void BoostOneIter(int iter, std::shared_ptr< DMatrix > train, HostDeviceVector< GradientPair > *in_gpair)=0
Do customized gradient boosting with in_gpair. in_gair can be mutated after this call.
virtual std::string EvalOneIter(int iter, const std::vector< std::shared_ptr< DMatrix > > &data_sets, const std::vector< std::string > &data_names)=0
evaluate the model for specific iteration using the configured metrics.
static Learner * Create(const std::vector< std::shared_ptr< DMatrix > > &cache_data)
Create a new instance of learner.
Definition learner.cc:1485
virtual void Configure()=0
Configure Learner based on set parameters.
virtual bool DelAttr(const std::string &key)=0
Delete an attribute from the booster.
virtual Learner * Slice(bst_layer_t begin, bst_layer_t end, bst_layer_t step, bool *out_of_bound)=0
Slice the model.
virtual bool GetAttr(const std::string &key, std::string *out) const =0
Get attribute from the booster. The property will be saved along the booster.
virtual void SetParams(Args const &args)=0
Set multiple parameters at once.
virtual void UpdateOneIter(int iter, std::shared_ptr< DMatrix > train)=0
update the model for one iteration With the specified objective function.
virtual void SetAttr(const std::string &key, const std::string &value)=0
Set additional attribute to the Booster.
std::unique_ptr< ObjFunction > obj_
objective function
Definition learner.h:269
std::unique_ptr< GradientBooster > gbm_
The gradient booster used by the model.
Definition learner.h:271
virtual void GetFeatureNames(std::vector< std::string > *fn) const =0
Get the feature names for current booster.
void LoadModel(Json const &in) override=0
load the model from a JSON object
virtual void SetFeatureTypes(std::vector< std::string > const &ft)=0
Set the feature types for current booster.
void SaveModel(Json *out) const override=0
saves the model config to a JSON object
Context ctx_
Training parameter.
Definition learner.h:275
virtual std::uint32_t Groups() const =0
Get the number of output groups from the model.
virtual void Predict(std::shared_ptr< DMatrix > data, bool output_margin, HostDeviceVector< bst_float > *out_preds, bst_layer_t layer_begin, bst_layer_t layer_end, bool training=false, bool pred_leaf=false, bool pred_contribs=false, bool approx_contribs=false, bool pred_interactions=false)=0
get prediction given the model.
virtual std::vector< std::string > GetAttrNames() const =0
Get a vector of attribute names from the booster.
virtual uint32_t GetNumFeature() const =0
Get the number of features of the booster.
virtual void GetFeatureTypes(std::vector< std::string > *ft) const =0
Get the feature types for current booster.
span class implementation, based on ISO++20 span<T>. The interface should be the same.
Definition span.h:424
A tensor storage.
Definition linalg.h:742
Copyright 2014-2023, XGBoost Contributors.
defines serializable interface of dmlc
Copyright 2015-2023 by XGBoost Contributors.
Copyright 2021-2023 by XGBoost Contributors.
Defines the abstract interface for different components in XGBoost.
namespace of xgboost
Definition base.h:90
uint32_t bst_feature_t
Type for data column (feature) index.
Definition base.h:101
std::uint32_t bst_target_t
Type for indexing into output targets.
Definition base.h:118
std::int32_t bst_layer_t
Type for indexing boosted layers.
Definition base.h:122
MultiStrategy
Strategy for building multi-target models.
Definition learner.h:283
Runtime context for XGBoost.
Definition context.h:84
training parameter for regression
Definition learner.cc:90
Basic model parameters, used to describe the booster.
Definition learner.h:291
std::uint32_t num_output_group
The number of classes or targets.
Definition learner.h:307
MultiStrategy multi_strategy
Strategy for building multi-target models.
Definition learner.h:315
ObjInfo task
Current task, determined by objective.
Definition learner.h:311
bst_feature_t num_feature
The number of features.
Definition learner.h:303
A struct returned by objective, which determines task at hand. The struct is not used by any algorith...
Definition task.h:24
entry to to easily hold returning information
Definition api_entry.h:16
Copyright 2014-2023 by XGBoost Contributors.