Medial Code Documentation
Loading...
Searching...
No Matches
Public Member Functions | Static Public Member Functions | Data Fields
ExplainProcessings Class Reference

Processings of explanations - grouping, Using covariance matrix for taking feature correlations into account. More...

#include <ExplainWrapper.h>

Inheritance diagram for ExplainProcessings:
SerializableObject

Public Member Functions

int init (map< string, string > &map)
 Virtual to init object from parsed fields.
 
void learn (const MedFeatures &train_mat)
 Learns process - for example cov matrix.
 
void process (map< string, float > &explain_list) const
 commit processings
 
void process (map< string, float > &explain_list, unsigned char *missing_value_mask) const
 
float get_group_normalized_contrib (const vector< int > &group_inds, vector< float > &contribs, float total_normalization_factor) const
 helper func: returns the normalized contribution for a specific group given original contributions
 
void post_deserialization ()
 
- Public Member Functions inherited from SerializableObject
virtual int version () const
 Relevant for serializations.
 
virtual string my_class_name () const
 For better handling of serializations it is highly recommended that each SerializableObject inheriting class will implement the next method.
 
virtual void serialized_fields_name (vector< string > &field_names) const
 The names of the serialized fields.
 
virtual void * new_polymorphic (string derived_name)
 for polymorphic classes that want to be able to serialize/deserialize a pointer * to the derived class given its type one needs to implement this function to return a new to the derived class given its type (as in my_type)
 
virtual void pre_serialization ()
 
virtual size_t get_size ()
 Gets bytes sizes for serializations.
 
virtual size_t serialize (unsigned char *blob)
 Serialiazing object to blob memory. return number ob bytes wrote to memory.
 
virtual size_t deserialize (unsigned char *blob)
 Deserialiazing blob to object. returns number of bytes read.
 
size_t serialize_vec (vector< unsigned char > &blob)
 
size_t deserialize_vec (vector< unsigned char > &blob)
 
virtual size_t serialize (vector< unsigned char > &blob)
 
virtual size_t deserialize (vector< unsigned char > &blob)
 
virtual int read_from_file (const string &fname)
 read and deserialize model
 
virtual int write_to_file (const string &fname)
 serialize model and write to file
 
virtual int read_from_file_unsafe (const string &fname)
 read and deserialize model without checking version number - unsafe read
 
int init_from_string (string init_string)
 Init from string.
 
int init_params_from_file (string init_file)
 
int init_param_from_file (string file_str, string &param)
 
int update_from_string (const string &init_string)
 
virtual int update (map< string, string > &map)
 Virtual to update object from parsed fields.
 
virtual string object_json () const
 

Static Public Member Functions

static void read_feature_grouping (const string &file_name, const vector< string > &features, vector< vector< int > > &group2index, vector< string > &group_names, bool verbose=true)
 Creates the feature groups from the argument file_name and by existing features.
 

Data Fields

bool group_by_sum = false
 If true will do grouping by sum of each feature, otherwise will use internal special implementation.
 
bool learn_cov_matrix = false
 If true will learn cov_matrix.
 
int normalize_vals = 0
 If != 0 will normalize contributions. 1: normalize by sum of (non b0) abs of all contributions 2: same, but also corrects for groups.
 
int zero_missing = 0
 if != 0 will throw bias terms and zero all contributions of missing values and groups of missing values
 
bool keep_b0 = false
 if true will keep b0 prior
 
bool iterative = false
 if true will add explainers iteratively, conditioned on those already selected
 
int iteration_cnt = 0
 if >0 the maximal number of iterations
 
bool use_max_cov = false
 If true will use max cov logic.
 
bool use_mutual_information
 if true will use mutual information instead of covariance
 
BinSettings mutual_inf_bin_setting
 the bin setting for mutual information
 
MedMat< float > abs_cov_features
 absolute values of covariance features for matrix.either read from file (and then apply absolute value), or learn if learn_cov_matrix is on ,
 
string grouping
 grouping file or "BY_SIGNAL" keyword to group by signal or "BY_SIGNAL_CATEG" - for category signal to split by values (aggreagates time windows) or "BY_SIGNAL_CATEG_TREND" - also splitby TRENDS
 
vector< vector< int > > group2Inds
 
vector< string > groupNames
 
map< string, vector< int > > groupName2Inds
 

Detailed Description

Processings of explanations - grouping, Using covariance matrix for taking feature correlations into account.

Member Function Documentation

◆ init()

int ExplainProcessings::init ( map< string, string > &  map)
virtual

Virtual to init object from parsed fields.

Reimplemented from SerializableObject.

◆ post_deserialization()

void ExplainProcessings::post_deserialization ( )
virtual

Reimplemented from SerializableObject.

◆ read_feature_grouping()

void ExplainProcessings::read_feature_grouping ( const string &  file_name,
const vector< string > &  features,
vector< vector< int > > &  group2index,
vector< string > &  group_names,
bool  verbose = true 
)
static

Creates the feature groups from the argument file_name and by existing features.

format TAB delim, 2 tokens: [Feature_name [TAB] group_name]


The documentation for this class was generated from the following files: