Medial Code Documentation
Loading...
Searching...
No Matches
TriangularMatrixVector_MKL.h
1/*
2 Copyright (c) 2011, Intel Corporation. All rights reserved.
3
4 Redistribution and use in source and binary forms, with or without modification,
5 are permitted provided that the following conditions are met:
6
7 * Redistributions of source code must retain the above copyright notice, this
8 list of conditions and the following disclaimer.
9 * Redistributions in binary form must reproduce the above copyright notice,
10 this list of conditions and the following disclaimer in the documentation
11 and/or other materials provided with the distribution.
12 * Neither the name of Intel Corporation nor the names of its contributors may
13 be used to endorse or promote products derived from this software without
14 specific prior written permission.
15
16 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
17 ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
18 WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
19 DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
20 ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21 (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
22 LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
23 ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
25 SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26
27 ********************************************************************************
28 * Content : Eigen bindings to Intel(R) MKL
29 * Triangular matrix-vector product functionality based on ?TRMV.
30 ********************************************************************************
31*/
32
33#ifndef EIGEN_TRIANGULAR_MATRIX_VECTOR_MKL_H
34#define EIGEN_TRIANGULAR_MATRIX_VECTOR_MKL_H
35
36namespace Eigen {
37
38namespace internal {
39
40/**********************************************************************
41* This file implements triangular matrix-vector multiplication using BLAS
42**********************************************************************/
43
44// trmv/hemv specialization
45
46template<typename Index, int Mode, typename LhsScalar, bool ConjLhs, typename RhsScalar, bool ConjRhs, int StorageOrder>
48 triangular_matrix_vector_product<Index,Mode,LhsScalar,ConjLhs,RhsScalar,ConjRhs,StorageOrder,BuiltIn> {};
49
50#define EIGEN_MKL_TRMV_SPECIALIZE(Scalar) \
51template<typename Index, int Mode, bool ConjLhs, bool ConjRhs> \
52struct triangular_matrix_vector_product<Index,Mode,Scalar,ConjLhs,Scalar,ConjRhs,ColMajor,Specialized> { \
53 static void run(Index _rows, Index _cols, const Scalar* _lhs, Index lhsStride, \
54 const Scalar* _rhs, Index rhsIncr, Scalar* _res, Index resIncr, Scalar alpha) { \
55 triangular_matrix_vector_product_trmv<Index,Mode,Scalar,ConjLhs,Scalar,ConjRhs,ColMajor>::run( \
56 _rows, _cols, _lhs, lhsStride, _rhs, rhsIncr, _res, resIncr, alpha); \
57 } \
58}; \
59template<typename Index, int Mode, bool ConjLhs, bool ConjRhs> \
60struct triangular_matrix_vector_product<Index,Mode,Scalar,ConjLhs,Scalar,ConjRhs,RowMajor,Specialized> { \
61 static void run(Index _rows, Index _cols, const Scalar* _lhs, Index lhsStride, \
62 const Scalar* _rhs, Index rhsIncr, Scalar* _res, Index resIncr, Scalar alpha) { \
63 triangular_matrix_vector_product_trmv<Index,Mode,Scalar,ConjLhs,Scalar,ConjRhs,RowMajor>::run( \
64 _rows, _cols, _lhs, lhsStride, _rhs, rhsIncr, _res, resIncr, alpha); \
65 } \
66};
67
68EIGEN_MKL_TRMV_SPECIALIZE(double)
69EIGEN_MKL_TRMV_SPECIALIZE(float)
70EIGEN_MKL_TRMV_SPECIALIZE(dcomplex)
71EIGEN_MKL_TRMV_SPECIALIZE(scomplex)
72
73// implements col-major: res += alpha * op(triangular) * vector
74#define EIGEN_MKL_TRMV_CM(EIGTYPE, MKLTYPE, EIGPREFIX, MKLPREFIX) \
75template<typename Index, int Mode, bool ConjLhs, bool ConjRhs> \
76struct triangular_matrix_vector_product_trmv<Index,Mode,EIGTYPE,ConjLhs,EIGTYPE,ConjRhs,ColMajor> { \
77 enum { \
78 IsLower = (Mode&Lower) == Lower, \
79 SetDiag = (Mode&(ZeroDiag|UnitDiag)) ? 0 : 1, \
80 IsUnitDiag = (Mode&UnitDiag) ? 1 : 0, \
81 IsZeroDiag = (Mode&ZeroDiag) ? 1 : 0, \
82 LowUp = IsLower ? Lower : Upper \
83 }; \
84 static void run(Index _rows, Index _cols, const EIGTYPE* _lhs, Index lhsStride, \
85 const EIGTYPE* _rhs, Index rhsIncr, EIGTYPE* _res, Index resIncr, EIGTYPE alpha) \
86 { \
87 if (ConjLhs || IsZeroDiag) { \
88 triangular_matrix_vector_product<Index,Mode,EIGTYPE,ConjLhs,EIGTYPE,ConjRhs,ColMajor,BuiltIn>::run( \
89 _rows, _cols, _lhs, lhsStride, _rhs, rhsIncr, _res, resIncr, alpha); \
90 return; \
91 }\
92 Index size = (std::min)(_rows,_cols); \
93 Index rows = IsLower ? _rows : size; \
94 Index cols = IsLower ? size : _cols; \
95\
96 typedef VectorX##EIGPREFIX VectorRhs; \
97 EIGTYPE *x, *y;\
98\
99/* Set x*/ \
100 Map<const VectorRhs, 0, InnerStride<> > rhs(_rhs,cols,InnerStride<>(rhsIncr)); \
101 VectorRhs x_tmp; \
102 if (ConjRhs) x_tmp = rhs.conjugate(); else x_tmp = rhs; \
103 x = x_tmp.data(); \
104\
105/* Square part handling */\
106\
107 char trans, uplo, diag; \
108 MKL_INT m, n, lda, incx, incy; \
109 EIGTYPE const *a; \
110 MKLTYPE alpha_, beta_; \
111 assign_scalar_eig2mkl<MKLTYPE, EIGTYPE>(alpha_, alpha); \
112 assign_scalar_eig2mkl<MKLTYPE, EIGTYPE>(beta_, EIGTYPE(1)); \
113\
114/* Set m, n */ \
115 n = (MKL_INT)size; \
116 lda = lhsStride; \
117 incx = 1; \
118 incy = resIncr; \
119\
120/* Set uplo, trans and diag*/ \
121 trans = 'N'; \
122 uplo = IsLower ? 'L' : 'U'; \
123 diag = IsUnitDiag ? 'U' : 'N'; \
124\
125/* call ?TRMV*/ \
126 MKLPREFIX##trmv(&uplo, &trans, &diag, &n, (const MKLTYPE*)_lhs, &lda, (MKLTYPE*)x, &incx); \
127\
128/* Add op(a_tr)rhs into res*/ \
129 MKLPREFIX##axpy(&n, &alpha_,(const MKLTYPE*)x, &incx, (MKLTYPE*)_res, &incy); \
130/* Non-square case - doesn't fit to MKL ?TRMV. Fall to default triangular product*/ \
131 if (size<(std::max)(rows,cols)) { \
132 if (ConjRhs) x_tmp = rhs.conjugate(); else x_tmp = rhs; \
133 x = x_tmp.data(); \
134 if (size<rows) { \
135 y = _res + size*resIncr; \
136 a = _lhs + size; \
137 m = rows-size; \
138 n = size; \
139 } \
140 else { \
141 x += size; \
142 y = _res; \
143 a = _lhs + size*lda; \
144 m = size; \
145 n = cols-size; \
146 } \
147 MKLPREFIX##gemv(&trans, &m, &n, &alpha_, (const MKLTYPE*)a, &lda, (const MKLTYPE*)x, &incx, &beta_, (MKLTYPE*)y, &incy); \
148 } \
149 } \
150};
151
152EIGEN_MKL_TRMV_CM(double, double, d, d)
153EIGEN_MKL_TRMV_CM(dcomplex, MKL_Complex16, cd, z)
154EIGEN_MKL_TRMV_CM(float, float, f, s)
155EIGEN_MKL_TRMV_CM(scomplex, MKL_Complex8, cf, c)
156
157// implements row-major: res += alpha * op(triangular) * vector
158#define EIGEN_MKL_TRMV_RM(EIGTYPE, MKLTYPE, EIGPREFIX, MKLPREFIX) \
159template<typename Index, int Mode, bool ConjLhs, bool ConjRhs> \
160struct triangular_matrix_vector_product_trmv<Index,Mode,EIGTYPE,ConjLhs,EIGTYPE,ConjRhs,RowMajor> { \
161 enum { \
162 IsLower = (Mode&Lower) == Lower, \
163 SetDiag = (Mode&(ZeroDiag|UnitDiag)) ? 0 : 1, \
164 IsUnitDiag = (Mode&UnitDiag) ? 1 : 0, \
165 IsZeroDiag = (Mode&ZeroDiag) ? 1 : 0, \
166 LowUp = IsLower ? Lower : Upper \
167 }; \
168 static void run(Index _rows, Index _cols, const EIGTYPE* _lhs, Index lhsStride, \
169 const EIGTYPE* _rhs, Index rhsIncr, EIGTYPE* _res, Index resIncr, EIGTYPE alpha) \
170 { \
171 if (IsZeroDiag) { \
172 triangular_matrix_vector_product<Index,Mode,EIGTYPE,ConjLhs,EIGTYPE,ConjRhs,RowMajor,BuiltIn>::run( \
173 _rows, _cols, _lhs, lhsStride, _rhs, rhsIncr, _res, resIncr, alpha); \
174 return; \
175 }\
176 Index size = (std::min)(_rows,_cols); \
177 Index rows = IsLower ? _rows : size; \
178 Index cols = IsLower ? size : _cols; \
179\
180 typedef VectorX##EIGPREFIX VectorRhs; \
181 EIGTYPE *x, *y;\
182\
183/* Set x*/ \
184 Map<const VectorRhs, 0, InnerStride<> > rhs(_rhs,cols,InnerStride<>(rhsIncr)); \
185 VectorRhs x_tmp; \
186 if (ConjRhs) x_tmp = rhs.conjugate(); else x_tmp = rhs; \
187 x = x_tmp.data(); \
188\
189/* Square part handling */\
190\
191 char trans, uplo, diag; \
192 MKL_INT m, n, lda, incx, incy; \
193 EIGTYPE const *a; \
194 MKLTYPE alpha_, beta_; \
195 assign_scalar_eig2mkl<MKLTYPE, EIGTYPE>(alpha_, alpha); \
196 assign_scalar_eig2mkl<MKLTYPE, EIGTYPE>(beta_, EIGTYPE(1)); \
197\
198/* Set m, n */ \
199 n = (MKL_INT)size; \
200 lda = lhsStride; \
201 incx = 1; \
202 incy = resIncr; \
203\
204/* Set uplo, trans and diag*/ \
205 trans = ConjLhs ? 'C' : 'T'; \
206 uplo = IsLower ? 'U' : 'L'; \
207 diag = IsUnitDiag ? 'U' : 'N'; \
208\
209/* call ?TRMV*/ \
210 MKLPREFIX##trmv(&uplo, &trans, &diag, &n, (const MKLTYPE*)_lhs, &lda, (MKLTYPE*)x, &incx); \
211\
212/* Add op(a_tr)rhs into res*/ \
213 MKLPREFIX##axpy(&n, &alpha_,(const MKLTYPE*)x, &incx, (MKLTYPE*)_res, &incy); \
214/* Non-square case - doesn't fit to MKL ?TRMV. Fall to default triangular product*/ \
215 if (size<(std::max)(rows,cols)) { \
216 if (ConjRhs) x_tmp = rhs.conjugate(); else x_tmp = rhs; \
217 x = x_tmp.data(); \
218 if (size<rows) { \
219 y = _res + size*resIncr; \
220 a = _lhs + size*lda; \
221 m = rows-size; \
222 n = size; \
223 } \
224 else { \
225 x += size; \
226 y = _res; \
227 a = _lhs + size; \
228 m = size; \
229 n = cols-size; \
230 } \
231 MKLPREFIX##gemv(&trans, &n, &m, &alpha_, (const MKLTYPE*)a, &lda, (const MKLTYPE*)x, &incx, &beta_, (MKLTYPE*)y, &incy); \
232 } \
233 } \
234};
235
236EIGEN_MKL_TRMV_RM(double, double, d, d)
237EIGEN_MKL_TRMV_RM(dcomplex, MKL_Complex16, cd, z)
238EIGEN_MKL_TRMV_RM(float, float, f, s)
239EIGEN_MKL_TRMV_RM(scomplex, MKL_Complex8, cf, c)
240
241} // end namespase internal
242
243} // end namespace Eigen
244
245#endif // EIGEN_TRIANGULAR_MATRIX_VECTOR_MKL_H
Pseudo expression representing a solving operation.
Definition Solve.h:63
Definition TriangularMatrixVector_MKL.h:48
Definition TriangularMatrixVector.h:18