10#ifndef EIGEN_STABLENORM_H
11#define EIGEN_STABLENORM_H
17template<
typename ExpressionType,
typename Scalar>
18inline void stable_norm_kernel(
const ExpressionType& bl, Scalar& ssq, Scalar& scale, Scalar& invScale)
20 Scalar maxCoeff = bl.cwiseAbs().maxCoeff();
24 ssq = ssq * numext::abs2(scale/maxCoeff);
25 Scalar tmp = Scalar(1)/maxCoeff;
26 if(tmp > NumTraits<Scalar>::highest())
28 invScale = NumTraits<Scalar>::highest();
29 scale = Scalar(1)/invScale;
31 else if(maxCoeff>NumTraits<Scalar>::highest())
42 else if(maxCoeff!=maxCoeff)
50 ssq += (bl*invScale).squaredNorm();
53template<
typename Derived>
54inline typename NumTraits<typename traits<Derived>::Scalar>::Real
55blueNorm_impl(
const EigenBase<Derived>& _vec)
57 typedef typename Derived::RealScalar RealScalar;
61 const Derived& vec(_vec.derived());
62 static bool initialized =
false;
63 static RealScalar b1, b2, s1m, s2m, rbig, relerr;
66 int ibeta, it, iemin, iemax, iexp;
76 ibeta = std::numeric_limits<RealScalar>::radix;
77 it = std::numeric_limits<RealScalar>::digits;
78 iemin = std::numeric_limits<RealScalar>::min_exponent;
79 iemax = std::numeric_limits<RealScalar>::max_exponent;
80 rbig = (std::numeric_limits<RealScalar>::max)();
82 iexp = -((1-iemin)/2);
83 b1 = RealScalar(pow(RealScalar(ibeta),RealScalar(iexp)));
84 iexp = (iemax + 1 - it)/2;
85 b2 = RealScalar(pow(RealScalar(ibeta),RealScalar(iexp)));
88 s1m = RealScalar(pow(RealScalar(ibeta),RealScalar(iexp)));
89 iexp = - ((iemax+it)/2);
90 s2m = RealScalar(pow(RealScalar(ibeta),RealScalar(iexp)));
92 eps = RealScalar(pow(
double(ibeta), 1-it));
97 RealScalar ab2 = b2 / RealScalar(n);
98 RealScalar asml = RealScalar(0);
99 RealScalar amed = RealScalar(0);
100 RealScalar abig = RealScalar(0);
101 for(
typename Derived::InnerIterator it(vec, 0); it; ++it)
103 RealScalar ax = abs(it.value());
104 if(ax > ab2) abig += numext::abs2(ax*s2m);
105 else if(ax < b1) asml += numext::abs2(ax*s1m);
106 else amed += numext::abs2(ax);
110 if(abig > RealScalar(0))
115 if(amed > RealScalar(0))
123 else if(asml > RealScalar(0))
125 if (amed > RealScalar(0))
128 amed = sqrt(asml) / s1m;
131 return sqrt(asml)/s1m;
135 asml = numext::mini(abig, amed);
136 abig = numext::maxi(abig, amed);
137 if(asml <= abig*relerr)
140 return abig * sqrt(RealScalar(1) + numext::abs2(asml/abig));
155template<
typename Derived>
156inline typename NumTraits<typename internal::traits<Derived>::Scalar>::Real
174 typename DerivedCopyClean
179 return abs(this->coeff(0));
181 Index
bi = internal::first_default_aligned(copy);
183 internal::stable_norm_kernel(copy.head(
bi),
ssq, scale,
invScale);
186 return scale * sqrt(
ssq);
198template<
typename Derived>
202 return internal::blueNorm_impl(*
this);
210template<
typename Derived>
Base class for all dense matrices, vectors, and expressions.
Definition MatrixBase.h:50
Pseudo expression representing a solving operation.
Definition Solve.h:63
const unsigned int DirectAccessBit
Means that the underlying array of coefficients can be directly accessed as a plain strided array.
Definition Constants.h:149
Definition CoreEvaluators.h:82
Definition BinaryFunctors.h:219