Medial Code Documentation
Loading...
Searching...
No Matches
SparseLU.h
1// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra.
3//
4// Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
5// Copyright (C) 2012-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
6//
7// This Source Code Form is subject to the terms of the Mozilla
8// Public License v. 2.0. If a copy of the MPL was not distributed
9// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10
11
12#ifndef EIGEN_SPARSE_LU_H
13#define EIGEN_SPARSE_LU_H
14
15namespace Eigen {
16
17template <typename _MatrixType, typename _OrderingType = COLAMDOrdering<typename _MatrixType::StorageIndex> > class SparseLU;
18template <typename MappedSparseMatrixType> struct SparseLUMatrixLReturnType;
19template <typename MatrixLType, typename MatrixUType> struct SparseLUMatrixUReturnType;
20
73template <typename _MatrixType, typename _OrderingType>
74class SparseLU : public SparseSolverBase<SparseLU<_MatrixType,_OrderingType> >, public internal::SparseLUImpl<typename _MatrixType::Scalar, typename _MatrixType::StorageIndex>
75{
76 protected:
78 using APIBase::m_isInitialized;
79 public:
80 using APIBase::_solve_impl;
81
82 typedef _MatrixType MatrixType;
84 typedef typename MatrixType::Scalar Scalar;
85 typedef typename MatrixType::RealScalar RealScalar;
86 typedef typename MatrixType::StorageIndex StorageIndex;
93
94 enum {
95 ColsAtCompileTime = MatrixType::ColsAtCompileTime,
96 MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
97 };
98
99 public:
100 SparseLU():m_lastError(""),m_Ustore(0,0,0,0,0,0),m_symmetricmode(false),m_diagpivotthresh(1.0),m_detPermR(1)
101 {
102 initperfvalues();
103 }
104 explicit SparseLU(const MatrixType& matrix)
105 : m_lastError(""),m_Ustore(0,0,0,0,0,0),m_symmetricmode(false),m_diagpivotthresh(1.0),m_detPermR(1)
106 {
107 initperfvalues();
108 compute(matrix);
109 }
110
111 ~SparseLU()
112 {
113 // Free all explicit dynamic pointers
114 }
115
116 void analyzePattern (const MatrixType& matrix);
117 void factorize (const MatrixType& matrix);
118 void simplicialfactorize(const MatrixType& matrix);
119
124 void compute (const MatrixType& matrix)
125 {
126 // Analyze
127 analyzePattern(matrix);
128 //Factorize
129 factorize(matrix);
130 }
131
132 inline Index rows() const { return m_mat.rows(); }
133 inline Index cols() const { return m_mat.cols(); }
135 void isSymmetric(bool sym)
136 {
137 m_symmetricmode = sym;
138 }
139
160
165 inline const PermutationType& rowsPermutation() const
166 {
167 return m_perm_r;
168 }
173 inline const PermutationType& colsPermutation() const
174 {
175 return m_perm_c;
176 }
178 void setPivotThreshold(const RealScalar& thresh)
179 {
180 m_diagpivotthresh = thresh;
181 }
182
183#ifdef EIGEN_PARSED_BY_DOXYGEN
190 template<typename Rhs>
191 inline const Solve<SparseLU, Rhs> solve(const MatrixBase<Rhs>& B) const;
192#endif // EIGEN_PARSED_BY_DOXYGEN
193
203 {
204 eigen_assert(m_isInitialized && "Decomposition is not initialized.");
205 return m_info;
206 }
207
211 std::string lastErrorMessage() const
212 {
213 return m_lastError;
214 }
215
216 template<typename Rhs, typename Dest>
217 bool _solve_impl(const MatrixBase<Rhs> &B, MatrixBase<Dest> &X_base) const
218 {
219 Dest& X(X_base.derived());
220 eigen_assert(m_factorizationIsOk && "The matrix should be factorized first");
221 EIGEN_STATIC_ASSERT((Dest::Flags&RowMajorBit)==0,
222 THIS_METHOD_IS_ONLY_FOR_COLUMN_MAJOR_MATRICES);
223
224 // Permute the right hand side to form X = Pr*B
225 // on return, X is overwritten by the computed solution
226 X.resize(B.rows(),B.cols());
227
228 // this ugly const_cast_derived() helps to detect aliasing when applying the permutations
229 for(Index j = 0; j < B.cols(); ++j)
230 X.col(j) = rowsPermutation() * B.const_cast_derived().col(j);
231
232 //Forward substitution with L
233 this->matrixL().solveInPlace(X);
234 this->matrixU().solveInPlace(X);
235
236 // Permute back the solution
237 for (Index j = 0; j < B.cols(); ++j)
238 X.col(j) = colsPermutation().inverse() * X.col(j);
239
240 return true;
241 }
242
254 {
255 using std::abs;
256 eigen_assert(m_factorizationIsOk && "The matrix should be factorized first.");
257 // Initialize with the determinant of the row matrix
258 Scalar det = Scalar(1.);
259 // Note that the diagonal blocks of U are stored in supernodes,
260 // which are available in the L part :)
261 for (Index j = 0; j < this->cols(); ++j)
262 {
263 for (typename SCMatrix::InnerIterator it(m_Lstore, j); it; ++it)
264 {
265 if(it.index() == j)
266 {
267 det *= abs(it.value());
268 break;
269 }
270 }
271 }
272 return det;
273 }
274
283 Scalar logAbsDeterminant() const
284 {
285 using std::log;
286 using std::abs;
287
288 eigen_assert(m_factorizationIsOk && "The matrix should be factorized first.");
289 Scalar det = Scalar(0.);
290 for (Index j = 0; j < this->cols(); ++j)
291 {
292 for (typename SCMatrix::InnerIterator it(m_Lstore, j); it; ++it)
293 {
294 if(it.row() < j) continue;
295 if(it.row() == j)
296 {
297 det += log(abs(it.value()));
298 break;
299 }
300 }
301 }
302 return det;
303 }
304
310 {
311 eigen_assert(m_factorizationIsOk && "The matrix should be factorized first.");
312 // Initialize with the determinant of the row matrix
313 Index det = 1;
314 // Note that the diagonal blocks of U are stored in supernodes,
315 // which are available in the L part :)
316 for (Index j = 0; j < this->cols(); ++j)
317 {
318 for (typename SCMatrix::InnerIterator it(m_Lstore, j); it; ++it)
319 {
320 if(it.index() == j)
321 {
322 if(it.value()<0)
323 det = -det;
324 else if(it.value()==0)
325 return 0;
326 break;
327 }
328 }
329 }
330 return det * m_detPermR * m_detPermC;
331 }
332
337 Scalar determinant()
338 {
339 eigen_assert(m_factorizationIsOk && "The matrix should be factorized first.");
340 // Initialize with the determinant of the row matrix
341 Scalar det = Scalar(1.);
342 // Note that the diagonal blocks of U are stored in supernodes,
343 // which are available in the L part :)
344 for (Index j = 0; j < this->cols(); ++j)
345 {
346 for (typename SCMatrix::InnerIterator it(m_Lstore, j); it; ++it)
347 {
348 if(it.index() == j)
349 {
350 det *= it.value();
351 break;
352 }
353 }
354 }
355 return (m_detPermR * m_detPermC) > 0 ? det : -det;
356 }
357
358 protected:
359 // Functions
360 void initperfvalues()
361 {
362 m_perfv.panel_size = 16;
363 m_perfv.relax = 1;
364 m_perfv.maxsuper = 128;
365 m_perfv.rowblk = 16;
366 m_perfv.colblk = 8;
367 m_perfv.fillfactor = 20;
368 }
369
370 // Variables
371 mutable ComputationInfo m_info;
372 bool m_factorizationIsOk;
373 bool m_analysisIsOk;
374 std::string m_lastError;
375 NCMatrix m_mat; // The input (permuted ) matrix
376 SCMatrix m_Lstore; // The lower triangular matrix (supernodal)
377 MappedSparseMatrix<Scalar,ColMajor,StorageIndex> m_Ustore; // The upper triangular matrix
378 PermutationType m_perm_c; // Column permutation
379 PermutationType m_perm_r ; // Row permutation
380 IndexVector m_etree; // Column elimination tree
381
382 typename Base::GlobalLU_t m_glu;
383
384 // SparseLU options
385 bool m_symmetricmode;
386 // values for performance
387 internal::perfvalues m_perfv;
388 RealScalar m_diagpivotthresh; // Specifies the threshold used for a diagonal entry to be an acceptable pivot
389 Index m_nnzL, m_nnzU; // Nonzeros in L and U factors
390 Index m_detPermR, m_detPermC; // Determinants of the permutation matrices
391 private:
392 // Disable copy constructor
393 SparseLU (const SparseLU& );
394
395}; // End class SparseLU
396
397
398
399// Functions needed by the anaysis phase
410template <typename MatrixType, typename OrderingType>
412{
413
414 //TODO It is possible as in SuperLU to compute row and columns scaling vectors to equilibrate the matrix mat.
415
416 // Firstly, copy the whole input matrix.
417 m_mat = mat;
418
419 // Compute fill-in ordering
421 ord(m_mat,m_perm_c);
422
423 // Apply the permutation to the column of the input matrix
424 if (m_perm_c.size())
425 {
426 m_mat.uncompress(); //NOTE: The effect of this command is only to create the InnerNonzeros pointers. FIXME : This vector is filled but not subsequently used.
427 // Then, permute only the column pointers
428 ei_declare_aligned_stack_constructed_variable(StorageIndex,outerIndexPtr,mat.cols()+1,mat.isCompressed()?const_cast<StorageIndex*>(mat.outerIndexPtr()):0);
429
430 // If the input matrix 'mat' is uncompressed, then the outer-indices do not match the ones of m_mat, and a copy is thus needed.
431 if(!mat.isCompressed())
432 IndexVector::Map(outerIndexPtr, mat.cols()+1) = IndexVector::Map(m_mat.outerIndexPtr(),mat.cols()+1);
433
434 // Apply the permutation and compute the nnz per column.
435 for (Index i = 0; i < mat.cols(); i++)
436 {
437 m_mat.outerIndexPtr()[m_perm_c.indices()(i)] = outerIndexPtr[i];
438 m_mat.innerNonZeroPtr()[m_perm_c.indices()(i)] = outerIndexPtr[i+1] - outerIndexPtr[i];
439 }
440 }
441
442 // Compute the column elimination tree of the permuted matrix
444 internal::coletree(m_mat, m_etree,firstRowElt);
445
446 // In symmetric mode, do not do postorder here
447 if (!m_symmetricmode) {
449 // Post order etree
450 internal::treePostorder(StorageIndex(m_mat.cols()), m_etree, post);
451
452
453 // Renumber etree in postorder
454 Index m = m_mat.cols();
455 iwork.resize(m+1);
456 for (Index i = 0; i < m; ++i) iwork(post(i)) = post(m_etree(i));
457 m_etree = iwork;
458
459 // Postmultiply A*Pc by post, i.e reorder the matrix according to the postorder of the etree
461 for (Index i = 0; i < m; i++)
462 post_perm.indices()(i) = post(i);
463
464 // Combine the two permutations : postorder the permutation for future use
465 if(m_perm_c.size()) {
466 m_perm_c = post_perm * m_perm_c;
467 }
468
469 } // end postordering
470
471 m_analysisIsOk = true;
472}
473
474// Functions needed by the numerical factorization phase
475
476
495template <typename MatrixType, typename OrderingType>
497{
498 using internal::emptyIdxLU;
499 eigen_assert(m_analysisIsOk && "analyzePattern() should be called first");
500 eigen_assert((matrix.rows() == matrix.cols()) && "Only for squared matrices");
501
502 typedef typename IndexVector::Scalar StorageIndex;
503
504 m_isInitialized = true;
505
506
507 // Apply the column permutation computed in analyzepattern()
508 // m_mat = matrix * m_perm_c.inverse();
509 m_mat = matrix;
510 if (m_perm_c.size())
511 {
512 m_mat.uncompress(); //NOTE: The effect of this command is only to create the InnerNonzeros pointers.
513 //Then, permute only the column pointers
514 const StorageIndex * outerIndexPtr;
515 if (matrix.isCompressed()) outerIndexPtr = matrix.outerIndexPtr();
516 else
517 {
518 StorageIndex* outerIndexPtr_t = new StorageIndex[matrix.cols()+1];
519 for(Index i = 0; i <= matrix.cols(); i++) outerIndexPtr_t[i] = m_mat.outerIndexPtr()[i];
520 outerIndexPtr = outerIndexPtr_t;
521 }
522 for (Index i = 0; i < matrix.cols(); i++)
523 {
524 m_mat.outerIndexPtr()[m_perm_c.indices()(i)] = outerIndexPtr[i];
525 m_mat.innerNonZeroPtr()[m_perm_c.indices()(i)] = outerIndexPtr[i+1] - outerIndexPtr[i];
526 }
527 if(!matrix.isCompressed()) delete[] outerIndexPtr;
528 }
529 else
530 { //FIXME This should not be needed if the empty permutation is handled transparently
531 m_perm_c.resize(matrix.cols());
532 for(StorageIndex i = 0; i < matrix.cols(); ++i) m_perm_c.indices()(i) = i;
533 }
534
535 Index m = m_mat.rows();
536 Index n = m_mat.cols();
537 Index nnz = m_mat.nonZeros();
538 Index maxpanel = m_perfv.panel_size * m;
539 // Allocate working storage common to the factor routines
540 Index lwork = 0;
541 Index info = Base::memInit(m, n, nnz, lwork, m_perfv.fillfactor, m_perfv.panel_size, m_glu);
542 if (info)
543 {
544 m_lastError = "UNABLE TO ALLOCATE WORKING MEMORY\n\n" ;
545 m_factorizationIsOk = false;
546 return ;
547 }
548
549 // Set up pointers for integer working arrays
550 IndexVector segrep(m); segrep.setZero();
551 IndexVector parent(m); parent.setZero();
552 IndexVector xplore(m); xplore.setZero();
555 IndexVector xprune(n); xprune.setZero();
556 IndexVector marker(m*internal::LUNoMarker); marker.setZero();
557
558 repfnz.setConstant(-1);
559 panel_lsub.setConstant(-1);
560
561 // Set up pointers for scalar working arrays
563 dense.setZero(maxpanel);
565 tempv.setZero(internal::LUnumTempV(m, m_perfv.panel_size, m_perfv.maxsuper, /*m_perfv.rowblk*/m) );
566
567 // Compute the inverse of perm_c
568 PermutationType iperm_c(m_perm_c.inverse());
569
570 // Identify initial relaxed snodes
572 if ( m_symmetricmode == true )
573 Base::heap_relax_snode(n, m_etree, m_perfv.relax, marker, relax_end);
574 else
575 Base::relax_snode(n, m_etree, m_perfv.relax, marker, relax_end);
576
577
578 m_perm_r.resize(m);
579 m_perm_r.indices().setConstant(-1);
580 marker.setConstant(-1);
581 m_detPermR = 1; // Record the determinant of the row permutation
582
583 m_glu.supno(0) = emptyIdxLU; m_glu.xsup.setConstant(0);
584 m_glu.xsup(0) = m_glu.xlsub(0) = m_glu.xusub(0) = m_glu.xlusup(0) = Index(0);
585
586 // Work on one 'panel' at a time. A panel is one of the following :
587 // (a) a relaxed supernode at the bottom of the etree, or
588 // (b) panel_size contiguous columns, <panel_size> defined by the user
589 Index jcol;
591 Index pivrow; // Pivotal row number in the original row matrix
592 Index nseg1; // Number of segments in U-column above panel row jcol
593 Index nseg; // Number of segments in each U-column
594 Index irep;
595 Index i, k, jj;
596 for (jcol = 0; jcol < n; )
597 {
598 // Adjust panel size so that a panel won't overlap with the next relaxed snode.
599 Index panel_size = m_perfv.panel_size; // upper bound on panel width
600 for (k = jcol + 1; k < (std::min)(jcol+panel_size, n); k++)
601 {
602 if (relax_end(k) != emptyIdxLU)
603 {
604 panel_size = k - jcol;
605 break;
606 }
607 }
608 if (k == n)
609 panel_size = n - jcol;
610
611 // Symbolic outer factorization on a panel of columns
612 Base::panel_dfs(m, panel_size, jcol, m_mat, m_perm_r.indices(), nseg1, dense, panel_lsub, segrep, repfnz, xprune, marker, parent, xplore, m_glu);
613
614 // Numeric sup-panel updates in topological order
615 Base::panel_bmod(m, panel_size, jcol, nseg1, dense, tempv, segrep, repfnz, m_glu);
616
617 // Sparse LU within the panel, and below the panel diagonal
618 for ( jj = jcol; jj< jcol + panel_size; jj++)
619 {
620 k = (jj - jcol) * m; // Column index for w-wide arrays
621
622 nseg = nseg1; // begin after all the panel segments
623 //Depth-first-search for the current column
626 info = Base::column_dfs(m, jj, m_perm_r.indices(), m_perfv.maxsuper, nseg, panel_lsubk, segrep, repfnz_k, xprune, marker, parent, xplore, m_glu);
627 if ( info )
628 {
629 m_lastError = "UNABLE TO EXPAND MEMORY IN COLUMN_DFS() ";
630 m_info = NumericalIssue;
631 m_factorizationIsOk = false;
632 return;
633 }
634 // Numeric updates to this column
637 info = Base::column_bmod(jj, (nseg - nseg1), dense_k, tempv, segrep_k, repfnz_k, jcol, m_glu);
638 if ( info )
639 {
640 m_lastError = "UNABLE TO EXPAND MEMORY IN COLUMN_BMOD() ";
641 m_info = NumericalIssue;
642 m_factorizationIsOk = false;
643 return;
644 }
645
646 // Copy the U-segments to ucol(*)
647 info = Base::copy_to_ucol(jj, nseg, segrep, repfnz_k ,m_perm_r.indices(), dense_k, m_glu);
648 if ( info )
649 {
650 m_lastError = "UNABLE TO EXPAND MEMORY IN COPY_TO_UCOL() ";
651 m_info = NumericalIssue;
652 m_factorizationIsOk = false;
653 return;
654 }
655
656 // Form the L-segment
657 info = Base::pivotL(jj, m_diagpivotthresh, m_perm_r.indices(), iperm_c.indices(), pivrow, m_glu);
658 if ( info )
659 {
660 m_lastError = "THE MATRIX IS STRUCTURALLY SINGULAR ... ZERO COLUMN AT ";
661 std::ostringstream returnInfo;
662 returnInfo << info;
663 m_lastError += returnInfo.str();
664 m_info = NumericalIssue;
665 m_factorizationIsOk = false;
666 return;
667 }
668
669 // Update the determinant of the row permutation matrix
670 // FIXME: the following test is not correct, we should probably take iperm_c into account and pivrow is not directly the row pivot.
671 if (pivrow != jj) m_detPermR = -m_detPermR;
672
673 // Prune columns (0:jj-1) using column jj
674 Base::pruneL(jj, m_perm_r.indices(), pivrow, nseg, segrep, repfnz_k, xprune, m_glu);
675
676 // Reset repfnz for this column
677 for (i = 0; i < nseg; i++)
678 {
679 irep = segrep(i);
680 repfnz_k(irep) = emptyIdxLU;
681 }
682 } // end SparseLU within the panel
683 jcol += panel_size; // Move to the next panel
684 } // end for -- end elimination
685
686 m_detPermR = m_perm_r.determinant();
687 m_detPermC = m_perm_c.determinant();
688
689 // Count the number of nonzeros in factors
690 Base::countnz(n, m_nnzL, m_nnzU, m_glu);
691 // Apply permutation to the L subscripts
692 Base::fixupL(n, m_perm_r.indices(), m_glu);
693
694 // Create supernode matrix L
695 m_Lstore.setInfos(m, n, m_glu.lusup, m_glu.xlusup, m_glu.lsub, m_glu.xlsub, m_glu.supno, m_glu.xsup);
696 // Create the column major upper sparse matrix U;
697 new (&m_Ustore) MappedSparseMatrix<Scalar, ColMajor, StorageIndex> ( m, n, m_nnzU, m_glu.xusub.data(), m_glu.usub.data(), m_glu.ucol.data() );
698
699 m_info = Success;
700 m_factorizationIsOk = true;
701}
702
703template<typename MappedSupernodalType>
705{
706 typedef typename MappedSupernodalType::Scalar Scalar;
708 { }
709 Index rows() { return m_mapL.rows(); }
710 Index cols() { return m_mapL.cols(); }
711 template<typename Dest>
712 void solveInPlace( MatrixBase<Dest> &X) const
713 {
714 m_mapL.solveInPlace(X);
715 }
716 const MappedSupernodalType& m_mapL;
717};
718
719template<typename MatrixLType, typename MatrixUType>
721{
722 typedef typename MatrixLType::Scalar Scalar;
723 SparseLUMatrixUReturnType(const MatrixLType& mapL, const MatrixUType& mapU)
724 : m_mapL(mapL),m_mapU(mapU)
725 { }
726 Index rows() { return m_mapL.rows(); }
727 Index cols() { return m_mapL.cols(); }
728
729 template<typename Dest> void solveInPlace(MatrixBase<Dest> &X) const
730 {
731 Index nrhs = X.cols();
732 Index n = X.rows();
733 // Backward solve with U
734 for (Index k = m_mapL.nsuper(); k >= 0; k--)
735 {
736 Index fsupc = m_mapL.supToCol()[k];
737 Index lda = m_mapL.colIndexPtr()[fsupc+1] - m_mapL.colIndexPtr()[fsupc]; // leading dimension
738 Index nsupc = m_mapL.supToCol()[k+1] - fsupc;
739 Index luptr = m_mapL.colIndexPtr()[fsupc];
740
741 if (nsupc == 1)
742 {
743 for (Index j = 0; j < nrhs; j++)
744 {
745 X(fsupc, j) /= m_mapL.valuePtr()[luptr];
746 }
747 }
748 else
749 {
752 U = A.template triangularView<Upper>().solve(U);
753 }
754
755 for (Index j = 0; j < nrhs; ++j)
756 {
757 for (Index jcol = fsupc; jcol < fsupc + nsupc; jcol++)
758 {
759 typename MatrixUType::InnerIterator it(m_mapU, jcol);
760 for ( ; it; ++it)
761 {
762 Index irow = it.index();
763 X(irow, j) -= X(jcol, j) * it.value();
764 }
765 }
766 }
767 } // End For U-solve
768 }
769 const MatrixLType& m_mapL;
770 const MatrixUType& m_mapU;
771};
772
773} // End namespace Eigen
774
775#endif
EIGEN_DEVICE_FUNC Derived & setZero(Index size)
Resizes to the given size, and sets all coefficients in this expression to zero.
Definition CwiseNullaryOp.h:520
Pseudo expression representing a solving operation.
Definition Solve.h:63
Sparse supernodal LU factorization for general matrices.
Definition SparseLU.h:75
Scalar determinant()
Definition SparseLU.h:337
Scalar absDeterminant()
Definition SparseLU.h:253
const PermutationType & colsPermutation() const
Definition SparseLU.h:173
void factorize(const MatrixType &matrix)
Definition SparseLU.h:496
SparseLUMatrixLReturnType< SCMatrix > matrixL() const
Definition SparseLU.h:146
std::string lastErrorMessage() const
Definition SparseLU.h:211
Scalar signDeterminant()
Definition SparseLU.h:309
Scalar logAbsDeterminant() const
Definition SparseLU.h:283
void setPivotThreshold(const RealScalar &thresh)
Set the threshold used for a diagonal entry to be an acceptable pivot.
Definition SparseLU.h:178
void compute(const MatrixType &matrix)
Compute the symbolic and numeric factorization of the input sparse matrix.
Definition SparseLU.h:124
void analyzePattern(const MatrixType &matrix)
Compute the column permutation to minimize the fill-in.
Definition SparseLU.h:411
ComputationInfo info() const
Reports whether previous computation was successful.
Definition SparseLU.h:202
const PermutationType & rowsPermutation() const
Definition SparseLU.h:165
SparseLUMatrixUReturnType< SCMatrix, MappedSparseMatrix< Scalar, ColMajor, StorageIndex > > matrixU() const
Definition SparseLU.h:156
void isSymmetric(bool sym)
Indicate that the pattern of the input matrix is symmetric.
Definition SparseLU.h:135
Index rows() const
Definition SparseMatrix.h:131
Index cols() const
Definition SparseMatrix.h:133
A base class for sparse solvers.
Definition SparseSolverBase.h:54
const Solve< SparseLU< _MatrixType, _OrderingType >, Rhs > solve(const MatrixBase< Rhs > &b) const
Definition SparseSolverBase.h:74
a class to manipulate the L supernodal factor from the SparseLU factorization
Definition SparseLU_SupernodalMatrix.h:34
Base class for sparseLU.
Definition SparseLUImpl.h:21
ComputationInfo
Enum for reporting the status of a computation.
Definition Constants.h:430
@ NumericalIssue
The provided data did not satisfy the prerequisites.
Definition Constants.h:434
@ Success
Computation was successful.
Definition Constants.h:432
const unsigned int RowMajorBit
for a matrix, this means that the storage order is row-major.
Definition Constants.h:61
Definition SparseLU.h:705
Definition SparseLU.h:721