10#ifndef EIGEN_SELFADJOINT_MATRIX_VECTOR_H
11#define EIGEN_SELFADJOINT_MATRIX_VECTOR_H
23template<
typename Scalar,
typename Index,
int StorageOrder,
int UpLo,
bool ConjugateLhs,
bool ConjugateRhs,
int Version=Specialized>
24struct selfadjoint_matrix_vector_product;
26template<
typename Scalar,
typename Index,
int StorageOrder,
int UpLo,
bool ConjugateLhs,
bool ConjugateRhs,
int Version>
30static EIGEN_DONT_INLINE
void run(
38template<
typename Scalar,
typename Index,
int StorageOrder,
int UpLo,
bool ConjugateLhs,
bool ConjugateRhs,
int Version>
46 typedef typename packet_traits<Scalar>::type Packet;
47 typedef typename NumTraits<Scalar>::Real RealScalar;
48 const Index PacketSize =
sizeof(Packet)/
sizeof(Scalar);
51 IsRowMajor = StorageOrder==
RowMajor ? 1 : 0,
52 IsLower = UpLo ==
Lower ? 1 : 0,
66 Index bound = (std::max)(Index(0),size-8) & 0xfffffffe;
91 res[
j] +=
cjd.pmul(numext::real(
A0[
j]),
t0);
92 res[
j+1] +=
cjd.pmul(numext::real(
A1[
j+1]),
t1);
100 res[j+1] += cj0.pmul(A0[j+1],t0);
101 t2 += cj1.pmul(A0[j+1], rhs[j+1]);
104 for (
size_t i=starti; i<alignedStart; ++i)
106 res[i] += cj0.pmul(A0[i], t0) + cj0.pmul(A1[i],t1);
107 t2 += cj1.pmul(A0[i], rhs[i]);
108 t3 += cj1.pmul(A1[i], rhs[i]);
112 const Scalar* EIGEN_RESTRICT a0It = A0 + alignedStart;
113 const Scalar* EIGEN_RESTRICT a1It = A1 + alignedStart;
114 const Scalar* EIGEN_RESTRICT rhsIt = rhs + alignedStart;
115 Scalar* EIGEN_RESTRICT resIt = res + alignedStart;
116 for (
size_t i=alignedStart; i<alignedEnd; i+=PacketSize)
118 Packet A0i = ploadu<Packet>(a0It); a0It += PacketSize;
119 Packet A1i = ploadu<Packet>(a1It); a1It += PacketSize;
120 Packet Bi = ploadu<Packet>(rhsIt); rhsIt += PacketSize;
121 Packet Xi = pload <Packet>(resIt);
123 Xi = pcj0.pmadd(A0i,ptmp0, pcj0.pmadd(A1i,ptmp1,Xi));
124 ptmp2 = pcj1.pmadd(A0i, Bi, ptmp2);
125 ptmp3 = pcj1.pmadd(A1i, Bi, ptmp3);
126 pstore(resIt,Xi); resIt += PacketSize;
128 for (
size_t i=alignedEnd; i<endi; i++)
130 res[i] += cj0.pmul(A0[i], t0) + cj0.pmul(A1[i],t1);
131 t2 += cj1.pmul(A0[i], rhs[i]);
132 t3 += cj1.pmul(A1[i], rhs[i]);
135 res[j] += alpha * (t2 + predux(ptmp2));
136 res[j+1] += alpha * (t3 + predux(ptmp3));
138 for (Index j=FirstTriangular ? 0 : bound;j<(FirstTriangular ? bound : size);j++)
140 const Scalar* EIGEN_RESTRICT A0 = lhs + j*lhsStride;
142 Scalar t1 = cjAlpha * rhs[j];
144 res[j] += cjd.pmul(numext::real(A0[j]), t1);
145 for (Index i=FirstTriangular ? 0 : j+1; i<(FirstTriangular ? j : size); i++)
147 res[i] += cj0.pmul(A0[i], t1);
148 t2 += cj1.pmul(A0[i], rhs[i]);
150 res[j] += alpha * t2;
162template<
typename Lhs,
int LhsMode,
typename Rhs>
177 template<
typename Dest>
180 typedef typename Dest::Scalar ResScalar;
181 typedef typename Rhs::Scalar RhsScalar;
184 eigen_assert(dest.rows()==
a_lhs.rows() && dest.cols()==
a_rhs.cols());
186 typename internal::add_const_on_value_type<ActualLhsType>::type lhs = LhsBlasTraits::extract(
a_lhs);
187 typename internal::add_const_on_value_type<ActualRhsType>::type rhs = RhsBlasTraits::extract(
a_rhs);
190 * RhsBlasTraits::extractScalarFactor(
a_rhs);
193 EvalToDest = (Dest::InnerStrideAtCompileTime==1),
194 UseRhs = (ActualRhsTypeCleaned::InnerStrideAtCompileTime==1)
200 ei_declare_aligned_stack_constructed_variable(ResScalar,
actualDestPtr,dest.size(),
203 ei_declare_aligned_stack_constructed_variable(RhsScalar,
actualRhsPtr,rhs.size(),
208 #ifdef EIGEN_DENSE_STORAGE_CTOR_PLUGIN
209 Index size = dest.size();
217 #ifdef EIGEN_DENSE_STORAGE_CTOR_PLUGIN
218 Index size = rhs.size();
226 int(LhsUpLo), bool(LhsBlasTraits::NeedToConjugate), bool(RhsBlasTraits::NeedToConjugate)>::run
229 &lhs.coeffRef(0,0), lhs.outerStride(),
240template<
typename Lhs,
typename Rhs,
int RhsMode>
246 template<
typename Dest>
Expression of the product of two arbitrary matrices or vectors.
Definition Product.h:111
Pseudo expression representing a solving operation.
Definition Solve.h:63
@ Lower
View matrix as a lower triangular matrix.
Definition Constants.h:204
@ Upper
View matrix as an upper triangular matrix.
Definition Constants.h:206
@ Aligned
Definition Constants.h:235
@ ColMajor
Storage order is column major (see TopicStorageOrders).
Definition Constants.h:320
@ RowMajor
Storage order is row major (see TopicStorageOrders).
Definition Constants.h:322
const unsigned int RowMajorBit
for a matrix, this means that the storage order is row-major.
Definition Constants.h:61
Definition BlasUtil.h:257
Definition GeneralProduct.h:169
Definition SelfadjointMatrixVector.h:29
Definition ProductEvaluators.h:691
Definition ForwardDeclarations.h:17