Medial Code Documentation
Loading...
Searching...
No Matches
RealSchur.h
1// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra.
3//
4// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
5// Copyright (C) 2010,2012 Jitse Niesen <jitse@maths.leeds.ac.uk>
6//
7// This Source Code Form is subject to the terms of the Mozilla
8// Public License v. 2.0. If a copy of the MPL was not distributed
9// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10
11#ifndef EIGEN_REAL_SCHUR_H
12#define EIGEN_REAL_SCHUR_H
13
14#include "./HessenbergDecomposition.h"
15
16namespace Eigen {
17
54template<typename _MatrixType> class RealSchur
55{
56 public:
57 typedef _MatrixType MatrixType;
58 enum {
59 RowsAtCompileTime = MatrixType::RowsAtCompileTime,
60 ColsAtCompileTime = MatrixType::ColsAtCompileTime,
61 Options = MatrixType::Options,
62 MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
63 MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
64 };
65 typedef typename MatrixType::Scalar Scalar;
66 typedef std::complex<typename NumTraits<Scalar>::Real> ComplexScalar;
67 typedef Eigen::Index Index;
68
71
83 explicit RealSchur(Index size = RowsAtCompileTime==Dynamic ? 1 : RowsAtCompileTime)
84 : m_matT(size, size),
85 m_matU(size, size),
86 m_workspaceVector(size),
87 m_hess(size),
88 m_isInitialized(false),
89 m_matUisUptodate(false),
90 m_maxIters(-1)
91 { }
92
103 template<typename InputType>
104 explicit RealSchur(const EigenBase<InputType>& matrix, bool computeU = true)
105 : m_matT(matrix.rows(),matrix.cols()),
106 m_matU(matrix.rows(),matrix.cols()),
107 m_workspaceVector(matrix.rows()),
108 m_hess(matrix.rows()),
109 m_isInitialized(false),
110 m_matUisUptodate(false),
111 m_maxIters(-1)
112 {
113 compute(matrix.derived(), computeU);
114 }
115
127 const MatrixType& matrixU() const
128 {
129 eigen_assert(m_isInitialized && "RealSchur is not initialized.");
130 eigen_assert(m_matUisUptodate && "The matrix U has not been computed during the RealSchur decomposition.");
131 return m_matU;
132 }
133
144 const MatrixType& matrixT() const
145 {
146 eigen_assert(m_isInitialized && "RealSchur is not initialized.");
147 return m_matT;
148 }
149
169 template<typename InputType>
170 RealSchur& compute(const EigenBase<InputType>& matrix, bool computeU = true);
171
189 template<typename HessMatrixType, typename OrthMatrixType>
190 RealSchur& computeFromHessenberg(const HessMatrixType& matrixH, const OrthMatrixType& matrixQ, bool computeU);
196 {
197 eigen_assert(m_isInitialized && "RealSchur is not initialized.");
198 return m_info;
199 }
200
207 {
208 m_maxIters = maxIters;
209 return *this;
210 }
211
214 {
215 return m_maxIters;
216 }
217
223 static const int m_maxIterationsPerRow = 40;
224
225 private:
226
227 MatrixType m_matT;
228 MatrixType m_matU;
229 ColumnVectorType m_workspaceVector;
231 ComputationInfo m_info;
232 bool m_isInitialized;
233 bool m_matUisUptodate;
234 Index m_maxIters;
235
237
238 Scalar computeNormOfT();
239 Index findSmallSubdiagEntry(Index iu);
240 void splitOffTwoRows(Index iu, bool computeU, const Scalar& exshift);
241 void computeShift(Index iu, Index iter, Scalar& exshift, Vector3s& shiftInfo);
242 void initFrancisQRStep(Index il, Index iu, const Vector3s& shiftInfo, Index& im, Vector3s& firstHouseholderVector);
243 void performFrancisQRStep(Index il, Index im, Index iu, bool computeU, const Vector3s& firstHouseholderVector, Scalar* workspace);
244};
245
246
247template<typename MatrixType>
248template<typename InputType>
250{
251 eigen_assert(matrix.cols() == matrix.rows());
252 Index maxIters = m_maxIters;
253 if (maxIters == -1)
254 maxIters = m_maxIterationsPerRow * matrix.rows();
255
256 // Step 1. Reduce to Hessenberg form
257 m_hess.compute(matrix.derived());
258
259 // Step 2. Reduce to real Schur form
260 computeFromHessenberg(m_hess.matrixH(), m_hess.matrixQ(), computeU);
261
262 return *this;
263}
264template<typename MatrixType>
265template<typename HessMatrixType, typename OrthMatrixType>
266RealSchur<MatrixType>& RealSchur<MatrixType>::computeFromHessenberg(const HessMatrixType& matrixH, const OrthMatrixType& matrixQ, bool computeU)
267{
268 m_matT = matrixH;
269 if(computeU)
270 m_matU = matrixQ;
271
272 Index maxIters = m_maxIters;
273 if (maxIters == -1)
274 maxIters = m_maxIterationsPerRow * matrixH.rows();
275 m_workspaceVector.resize(m_matT.cols());
276 Scalar* workspace = &m_workspaceVector.coeffRef(0);
277
278 // The matrix m_matT is divided in three parts.
279 // Rows 0,...,il-1 are decoupled from the rest because m_matT(il,il-1) is zero.
280 // Rows il,...,iu is the part we are working on (the active window).
281 // Rows iu+1,...,end are already brought in triangular form.
282 Index iu = m_matT.cols() - 1;
283 Index iter = 0; // iteration count for current eigenvalue
284 Index totalIter = 0; // iteration count for whole matrix
285 Scalar exshift(0); // sum of exceptional shifts
286 Scalar norm = computeNormOfT();
287
288 if(norm!=0)
289 {
290 while (iu >= 0)
291 {
292 Index il = findSmallSubdiagEntry(iu);
293
294 // Check for convergence
295 if (il == iu) // One root found
296 {
297 m_matT.coeffRef(iu,iu) = m_matT.coeff(iu,iu) + exshift;
298 if (iu > 0)
299 m_matT.coeffRef(iu, iu-1) = Scalar(0);
300 iu--;
301 iter = 0;
302 }
303 else if (il == iu-1) // Two roots found
304 {
305 splitOffTwoRows(iu, computeU, exshift);
306 iu -= 2;
307 iter = 0;
308 }
309 else // No convergence yet
310 {
311 // The firstHouseholderVector vector has to be initialized to something to get rid of a silly GCC warning (-O1 -Wall -DNDEBUG )
312 Vector3s firstHouseholderVector(0,0,0), shiftInfo;
313 computeShift(iu, iter, exshift, shiftInfo);
314 iter = iter + 1;
315 totalIter = totalIter + 1;
316 if (totalIter > maxIters) break;
317 Index im;
318 initFrancisQRStep(il, iu, shiftInfo, im, firstHouseholderVector);
319 performFrancisQRStep(il, im, iu, computeU, firstHouseholderVector, workspace);
320 }
321 }
322 }
323 if(totalIter <= maxIters)
324 m_info = Success;
325 else
326 m_info = NoConvergence;
327
328 m_isInitialized = true;
329 m_matUisUptodate = computeU;
330 return *this;
331}
332
334template<typename MatrixType>
335inline typename MatrixType::Scalar RealSchur<MatrixType>::computeNormOfT()
336{
337 const Index size = m_matT.cols();
338 // FIXME to be efficient the following would requires a triangular reduxion code
339 // Scalar norm = m_matT.upper().cwiseAbs().sum()
340 // + m_matT.bottomLeftCorner(size-1,size-1).diagonal().cwiseAbs().sum();
341 Scalar norm(0);
342 for (Index j = 0; j < size; ++j)
343 norm += m_matT.col(j).segment(0, (std::min)(size,j+2)).cwiseAbs().sum();
344 return norm;
345}
346
348template<typename MatrixType>
349inline Index RealSchur<MatrixType>::findSmallSubdiagEntry(Index iu)
350{
351 using std::abs;
352 Index res = iu;
353 while (res > 0)
354 {
355 Scalar s = abs(m_matT.coeff(res-1,res-1)) + abs(m_matT.coeff(res,res));
356 if (abs(m_matT.coeff(res,res-1)) <= NumTraits<Scalar>::epsilon() * s)
357 break;
358 res--;
359 }
360 return res;
361}
362
364template<typename MatrixType>
365inline void RealSchur<MatrixType>::splitOffTwoRows(Index iu, bool computeU, const Scalar& exshift)
366{
367 using std::sqrt;
368 using std::abs;
369 const Index size = m_matT.cols();
370
371 // The eigenvalues of the 2x2 matrix [a b; c d] are
372 // trace +/- sqrt(discr/4) where discr = tr^2 - 4*det, tr = a + d, det = ad - bc
373 Scalar p = Scalar(0.5) * (m_matT.coeff(iu-1,iu-1) - m_matT.coeff(iu,iu));
374 Scalar q = p * p + m_matT.coeff(iu,iu-1) * m_matT.coeff(iu-1,iu); // q = tr^2 / 4 - det = discr/4
375 m_matT.coeffRef(iu,iu) += exshift;
376 m_matT.coeffRef(iu-1,iu-1) += exshift;
377
378 if (q >= Scalar(0)) // Two real eigenvalues
379 {
380 Scalar z = sqrt(abs(q));
381 JacobiRotation<Scalar> rot;
382 if (p >= Scalar(0))
383 rot.makeGivens(p + z, m_matT.coeff(iu, iu-1));
384 else
385 rot.makeGivens(p - z, m_matT.coeff(iu, iu-1));
386
387 m_matT.rightCols(size-iu+1).applyOnTheLeft(iu-1, iu, rot.adjoint());
388 m_matT.topRows(iu+1).applyOnTheRight(iu-1, iu, rot);
389 m_matT.coeffRef(iu, iu-1) = Scalar(0);
390 if (computeU)
391 m_matU.applyOnTheRight(iu-1, iu, rot);
392 }
393
394 if (iu > 1)
395 m_matT.coeffRef(iu-1, iu-2) = Scalar(0);
396}
397
399template<typename MatrixType>
400inline void RealSchur<MatrixType>::computeShift(Index iu, Index iter, Scalar& exshift, Vector3s& shiftInfo)
401{
402 using std::sqrt;
403 using std::abs;
404 shiftInfo.coeffRef(0) = m_matT.coeff(iu,iu);
405 shiftInfo.coeffRef(1) = m_matT.coeff(iu-1,iu-1);
406 shiftInfo.coeffRef(2) = m_matT.coeff(iu,iu-1) * m_matT.coeff(iu-1,iu);
407
408 // Wilkinson's original ad hoc shift
409 if (iter == 10)
410 {
411 exshift += shiftInfo.coeff(0);
412 for (Index i = 0; i <= iu; ++i)
413 m_matT.coeffRef(i,i) -= shiftInfo.coeff(0);
414 Scalar s = abs(m_matT.coeff(iu,iu-1)) + abs(m_matT.coeff(iu-1,iu-2));
415 shiftInfo.coeffRef(0) = Scalar(0.75) * s;
416 shiftInfo.coeffRef(1) = Scalar(0.75) * s;
417 shiftInfo.coeffRef(2) = Scalar(-0.4375) * s * s;
418 }
419
420 // MATLAB's new ad hoc shift
421 if (iter == 30)
422 {
423 Scalar s = (shiftInfo.coeff(1) - shiftInfo.coeff(0)) / Scalar(2.0);
424 s = s * s + shiftInfo.coeff(2);
425 if (s > Scalar(0))
426 {
427 s = sqrt(s);
428 if (shiftInfo.coeff(1) < shiftInfo.coeff(0))
429 s = -s;
430 s = s + (shiftInfo.coeff(1) - shiftInfo.coeff(0)) / Scalar(2.0);
431 s = shiftInfo.coeff(0) - shiftInfo.coeff(2) / s;
432 exshift += s;
433 for (Index i = 0; i <= iu; ++i)
434 m_matT.coeffRef(i,i) -= s;
435 shiftInfo.setConstant(Scalar(0.964));
436 }
437 }
438}
439
441template<typename MatrixType>
442inline void RealSchur<MatrixType>::initFrancisQRStep(Index il, Index iu, const Vector3s& shiftInfo, Index& im, Vector3s& firstHouseholderVector)
443{
444 using std::abs;
445 Vector3s& v = firstHouseholderVector; // alias to save typing
446
447 for (im = iu-2; im >= il; --im)
448 {
449 const Scalar Tmm = m_matT.coeff(im,im);
450 const Scalar r = shiftInfo.coeff(0) - Tmm;
451 const Scalar s = shiftInfo.coeff(1) - Tmm;
452 v.coeffRef(0) = (r * s - shiftInfo.coeff(2)) / m_matT.coeff(im+1,im) + m_matT.coeff(im,im+1);
453 v.coeffRef(1) = m_matT.coeff(im+1,im+1) - Tmm - r - s;
454 v.coeffRef(2) = m_matT.coeff(im+2,im+1);
455 if (im == il) {
456 break;
457 }
458 const Scalar lhs = m_matT.coeff(im,im-1) * (abs(v.coeff(1)) + abs(v.coeff(2)));
459 const Scalar rhs = v.coeff(0) * (abs(m_matT.coeff(im-1,im-1)) + abs(Tmm) + abs(m_matT.coeff(im+1,im+1)));
460 if (abs(lhs) < NumTraits<Scalar>::epsilon() * rhs)
461 break;
462 }
463}
464
466template<typename MatrixType>
467inline void RealSchur<MatrixType>::performFrancisQRStep(Index il, Index im, Index iu, bool computeU, const Vector3s& firstHouseholderVector, Scalar* workspace)
468{
469 eigen_assert(im >= il);
470 eigen_assert(im <= iu-2);
471
472 const Index size = m_matT.cols();
473
474 for (Index k = im; k <= iu-2; ++k)
475 {
476 bool firstIteration = (k == im);
477
478 Vector3s v;
479 if (firstIteration)
480 v = firstHouseholderVector;
481 else
482 v = m_matT.template block<3,1>(k,k-1);
483
484 Scalar tau, beta;
486 v.makeHouseholder(ess, tau, beta);
487
488 if (beta != Scalar(0)) // if v is not zero
489 {
490 if (firstIteration && k > il)
491 m_matT.coeffRef(k,k-1) = -m_matT.coeff(k,k-1);
492 else if (!firstIteration)
493 m_matT.coeffRef(k,k-1) = beta;
494
495 // These Householder transformations form the O(n^3) part of the algorithm
496 m_matT.block(k, k, 3, size-k).applyHouseholderOnTheLeft(ess, tau, workspace);
497 m_matT.block(0, k, (std::min)(iu,k+3) + 1, 3).applyHouseholderOnTheRight(ess, tau, workspace);
498 if (computeU)
499 m_matU.block(0, k, size, 3).applyHouseholderOnTheRight(ess, tau, workspace);
500 }
501 }
502
503 Matrix<Scalar, 2, 1> v = m_matT.template block<2,1>(iu-1, iu-2);
504 Scalar tau, beta;
506 v.makeHouseholder(ess, tau, beta);
507
508 if (beta != Scalar(0)) // if v is not zero
509 {
510 m_matT.coeffRef(iu-1, iu-2) = beta;
511 m_matT.block(iu-1, iu-1, 2, size-iu+1).applyHouseholderOnTheLeft(ess, tau, workspace);
512 m_matT.block(0, iu-1, iu+1, 2).applyHouseholderOnTheRight(ess, tau, workspace);
513 if (computeU)
514 m_matU.block(0, iu-1, size, 2).applyHouseholderOnTheRight(ess, tau, workspace);
515 }
516
517 // clean up pollution due to round-off errors
518 for (Index i = im+2; i <= iu; ++i)
519 {
520 m_matT.coeffRef(i,i-2) = Scalar(0);
521 if (i > im+2)
522 m_matT.coeffRef(i,i-3) = Scalar(0);
523 }
524}
525
526} // end namespace Eigen
527
528#endif // EIGEN_REAL_SCHUR_H
\eigenvalues_module
Definition RealSchur.h:55
RealSchur & compute(const EigenBase< InputType > &matrix, bool computeU=true)
Computes Schur decomposition of given matrix.
ComputationInfo info() const
Reports whether previous computation was successful.
Definition RealSchur.h:195
const MatrixType & matrixU() const
Returns the orthogonal matrix in the Schur decomposition.
Definition RealSchur.h:127
static const int m_maxIterationsPerRow
Maximum number of iterations per row.
Definition RealSchur.h:223
RealSchur(Index size=RowsAtCompileTime==Dynamic ? 1 :RowsAtCompileTime)
Default constructor.
Definition RealSchur.h:83
Eigen::Index Index
Definition RealSchur.h:67
const MatrixType & matrixT() const
Returns the quasi-triangular matrix in the Schur decomposition.
Definition RealSchur.h:144
Index getMaxIterations()
Returns the maximum number of iterations.
Definition RealSchur.h:213
RealSchur & computeFromHessenberg(const HessMatrixType &matrixH, const OrthMatrixType &matrixQ, bool computeU)
Computes Schur decomposition of a Hessenberg matrix H = Z T Z^T.
RealSchur & setMaxIterations(Index maxIters)
Sets the maximum number of iterations allowed.
Definition RealSchur.h:206
RealSchur(const EigenBase< InputType > &matrix, bool computeU=true)
Constructor; computes real Schur decomposition of given matrix.
Definition RealSchur.h:104
Pseudo expression representing a solving operation.
Definition Solve.h:63
ComputationInfo
Enum for reporting the status of a computation.
Definition Constants.h:430
@ Success
Computation was successful.
Definition Constants.h:432
@ NoConvergence
Iterative procedure did not converge.
Definition Constants.h:436
Definition inference.c:32