Medial Code Documentation
Loading...
Searching...
No Matches
JacobiSVD.h
1// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra.
3//
4// Copyright (C) 2009-2010 Benoit Jacob <jacob.benoit.1@gmail.com>
5// Copyright (C) 2013-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
6//
7// This Source Code Form is subject to the terms of the Mozilla
8// Public License v. 2.0. If a copy of the MPL was not distributed
9// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10
11#ifndef EIGEN_JACOBISVD_H
12#define EIGEN_JACOBISVD_H
13
14namespace Eigen {
15
16namespace internal {
17// forward declaration (needed by ICC)
18// the empty body is required by MSVC
19template<typename MatrixType, int QRPreconditioner,
20 bool IsComplex = NumTraits<typename MatrixType::Scalar>::IsComplex>
22
23/*** QR preconditioners (R-SVD)
24 ***
25 *** Their role is to reduce the problem of computing the SVD to the case of a square matrix.
26 *** This approach, known as R-SVD, is an optimization for rectangular-enough matrices, and is a requirement for
27 *** JacobiSVD which by itself is only able to work on square matrices.
28 ***/
29
30enum { PreconditionIfMoreColsThanRows, PreconditionIfMoreRowsThanCols };
31
32template<typename MatrixType, int QRPreconditioner, int Case>
34{
35 enum { a = MatrixType::RowsAtCompileTime != Dynamic &&
36 MatrixType::ColsAtCompileTime != Dynamic &&
37 MatrixType::ColsAtCompileTime <= MatrixType::RowsAtCompileTime,
38 b = MatrixType::RowsAtCompileTime != Dynamic &&
39 MatrixType::ColsAtCompileTime != Dynamic &&
40 MatrixType::RowsAtCompileTime <= MatrixType::ColsAtCompileTime,
42 (Case == PreconditionIfMoreColsThanRows && bool(a)) ||
43 (Case == PreconditionIfMoreRowsThanCols && bool(b)) )
44 };
45};
46
47template<typename MatrixType, int QRPreconditioner, int Case,
50
51template<typename MatrixType, int QRPreconditioner, int Case>
53{
54public:
55 void allocate(const JacobiSVD<MatrixType, QRPreconditioner>&) {}
56 bool run(JacobiSVD<MatrixType, QRPreconditioner>&, const MatrixType&)
57 {
58 return false;
59 }
60};
61
62/*** preconditioner using FullPivHouseholderQR ***/
63
64template<typename MatrixType>
65class qr_preconditioner_impl<MatrixType, FullPivHouseholderQRPreconditioner, PreconditionIfMoreRowsThanCols, true>
66{
67public:
68 typedef typename MatrixType::Scalar Scalar;
69 enum
70 {
71 RowsAtCompileTime = MatrixType::RowsAtCompileTime,
72 MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime
73 };
75
77 {
78 if (svd.rows() != m_qr.rows() || svd.cols() != m_qr.cols())
79 {
80 m_qr.~QRType();
81 ::new (&m_qr) QRType(svd.rows(), svd.cols());
82 }
83 if (svd.m_computeFullU) m_workspace.resize(svd.rows());
84 }
85
86 bool run(JacobiSVD<MatrixType, FullPivHouseholderQRPreconditioner>& svd, const MatrixType& matrix)
87 {
88 if(matrix.rows() > matrix.cols())
89 {
90 m_qr.compute(matrix);
91 svd.m_workMatrix = m_qr.matrixQR().block(0,0,matrix.cols(),matrix.cols()).template triangularView<Upper>();
92 if(svd.m_computeFullU) m_qr.matrixQ().evalTo(svd.m_matrixU, m_workspace);
93 if(svd.computeV()) svd.m_matrixV = m_qr.colsPermutation();
94 return true;
95 }
96 return false;
97 }
98private:
100 QRType m_qr;
101 WorkspaceType m_workspace;
102};
103
104template<typename MatrixType>
105class qr_preconditioner_impl<MatrixType, FullPivHouseholderQRPreconditioner, PreconditionIfMoreColsThanRows, true>
106{
107public:
108 typedef typename MatrixType::Scalar Scalar;
109 enum
110 {
111 RowsAtCompileTime = MatrixType::RowsAtCompileTime,
112 ColsAtCompileTime = MatrixType::ColsAtCompileTime,
113 MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
114 MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime,
115 Options = MatrixType::Options
116 };
119
121 {
122 if (svd.cols() != m_qr.rows() || svd.rows() != m_qr.cols())
123 {
124 m_qr.~QRType();
125 ::new (&m_qr) QRType(svd.cols(), svd.rows());
126 }
127 m_adjoint.resize(svd.cols(), svd.rows());
128 if (svd.m_computeFullV) m_workspace.resize(svd.cols());
129 }
130
131 bool run(JacobiSVD<MatrixType, FullPivHouseholderQRPreconditioner>& svd, const MatrixType& matrix)
132 {
133 if(matrix.cols() > matrix.rows())
134 {
135 m_adjoint = matrix.adjoint();
136 m_qr.compute(m_adjoint);
137 svd.m_workMatrix = m_qr.matrixQR().block(0,0,matrix.rows(),matrix.rows()).template triangularView<Upper>().adjoint();
138 if(svd.m_computeFullV) m_qr.matrixQ().evalTo(svd.m_matrixV, m_workspace);
139 if(svd.computeU()) svd.m_matrixU = m_qr.colsPermutation();
140 return true;
141 }
142 else return false;
143 }
144private:
146 QRType m_qr;
149};
150
151/*** preconditioner using ColPivHouseholderQR ***/
152
153template<typename MatrixType>
154class qr_preconditioner_impl<MatrixType, ColPivHouseholderQRPreconditioner, PreconditionIfMoreRowsThanCols, true>
155{
156public:
158 {
159 if (svd.rows() != m_qr.rows() || svd.cols() != m_qr.cols())
160 {
161 m_qr.~QRType();
162 ::new (&m_qr) QRType(svd.rows(), svd.cols());
163 }
164 if (svd.m_computeFullU) m_workspace.resize(svd.rows());
165 else if (svd.m_computeThinU) m_workspace.resize(svd.cols());
166 }
167
168 bool run(JacobiSVD<MatrixType, ColPivHouseholderQRPreconditioner>& svd, const MatrixType& matrix)
169 {
170 if(matrix.rows() > matrix.cols())
171 {
172 m_qr.compute(matrix);
173 svd.m_workMatrix = m_qr.matrixQR().block(0,0,matrix.cols(),matrix.cols()).template triangularView<Upper>();
174 if(svd.m_computeFullU) m_qr.householderQ().evalTo(svd.m_matrixU, m_workspace);
175 else if(svd.m_computeThinU)
176 {
177 svd.m_matrixU.setIdentity(matrix.rows(), matrix.cols());
178 m_qr.householderQ().applyThisOnTheLeft(svd.m_matrixU, m_workspace);
179 }
180 if(svd.computeV()) svd.m_matrixV = m_qr.colsPermutation();
181 return true;
182 }
183 return false;
184 }
185
186private:
188 QRType m_qr;
190};
191
192template<typename MatrixType>
193class qr_preconditioner_impl<MatrixType, ColPivHouseholderQRPreconditioner, PreconditionIfMoreColsThanRows, true>
194{
195public:
196 typedef typename MatrixType::Scalar Scalar;
197 enum
198 {
199 RowsAtCompileTime = MatrixType::RowsAtCompileTime,
200 ColsAtCompileTime = MatrixType::ColsAtCompileTime,
201 MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
202 MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime,
203 Options = MatrixType::Options
204 };
205
208
210 {
211 if (svd.cols() != m_qr.rows() || svd.rows() != m_qr.cols())
212 {
213 m_qr.~QRType();
214 ::new (&m_qr) QRType(svd.cols(), svd.rows());
215 }
216 if (svd.m_computeFullV) m_workspace.resize(svd.cols());
217 else if (svd.m_computeThinV) m_workspace.resize(svd.rows());
218 m_adjoint.resize(svd.cols(), svd.rows());
219 }
220
221 bool run(JacobiSVD<MatrixType, ColPivHouseholderQRPreconditioner>& svd, const MatrixType& matrix)
222 {
223 if(matrix.cols() > matrix.rows())
224 {
225 m_adjoint = matrix.adjoint();
226 m_qr.compute(m_adjoint);
227
228 svd.m_workMatrix = m_qr.matrixQR().block(0,0,matrix.rows(),matrix.rows()).template triangularView<Upper>().adjoint();
229 if(svd.m_computeFullV) m_qr.householderQ().evalTo(svd.m_matrixV, m_workspace);
230 else if(svd.m_computeThinV)
231 {
232 svd.m_matrixV.setIdentity(matrix.cols(), matrix.rows());
233 m_qr.householderQ().applyThisOnTheLeft(svd.m_matrixV, m_workspace);
234 }
235 if(svd.computeU()) svd.m_matrixU = m_qr.colsPermutation();
236 return true;
237 }
238 else return false;
239 }
240
241private:
243 QRType m_qr;
246};
247
248/*** preconditioner using HouseholderQR ***/
249
250template<typename MatrixType>
251class qr_preconditioner_impl<MatrixType, HouseholderQRPreconditioner, PreconditionIfMoreRowsThanCols, true>
252{
253public:
255 {
256 if (svd.rows() != m_qr.rows() || svd.cols() != m_qr.cols())
257 {
258 m_qr.~QRType();
259 ::new (&m_qr) QRType(svd.rows(), svd.cols());
260 }
261 if (svd.m_computeFullU) m_workspace.resize(svd.rows());
262 else if (svd.m_computeThinU) m_workspace.resize(svd.cols());
263 }
264
265 bool run(JacobiSVD<MatrixType, HouseholderQRPreconditioner>& svd, const MatrixType& matrix)
266 {
267 if(matrix.rows() > matrix.cols())
268 {
269 m_qr.compute(matrix);
270 svd.m_workMatrix = m_qr.matrixQR().block(0,0,matrix.cols(),matrix.cols()).template triangularView<Upper>();
271 if(svd.m_computeFullU) m_qr.householderQ().evalTo(svd.m_matrixU, m_workspace);
272 else if(svd.m_computeThinU)
273 {
274 svd.m_matrixU.setIdentity(matrix.rows(), matrix.cols());
275 m_qr.householderQ().applyThisOnTheLeft(svd.m_matrixU, m_workspace);
276 }
277 if(svd.computeV()) svd.m_matrixV.setIdentity(matrix.cols(), matrix.cols());
278 return true;
279 }
280 return false;
281 }
282private:
284 QRType m_qr;
286};
287
288template<typename MatrixType>
289class qr_preconditioner_impl<MatrixType, HouseholderQRPreconditioner, PreconditionIfMoreColsThanRows, true>
290{
291public:
292 typedef typename MatrixType::Scalar Scalar;
293 enum
294 {
295 RowsAtCompileTime = MatrixType::RowsAtCompileTime,
296 ColsAtCompileTime = MatrixType::ColsAtCompileTime,
297 MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
298 MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime,
299 Options = MatrixType::Options
300 };
301
304
306 {
307 if (svd.cols() != m_qr.rows() || svd.rows() != m_qr.cols())
308 {
309 m_qr.~QRType();
310 ::new (&m_qr) QRType(svd.cols(), svd.rows());
311 }
312 if (svd.m_computeFullV) m_workspace.resize(svd.cols());
313 else if (svd.m_computeThinV) m_workspace.resize(svd.rows());
314 m_adjoint.resize(svd.cols(), svd.rows());
315 }
316
317 bool run(JacobiSVD<MatrixType, HouseholderQRPreconditioner>& svd, const MatrixType& matrix)
318 {
319 if(matrix.cols() > matrix.rows())
320 {
321 m_adjoint = matrix.adjoint();
322 m_qr.compute(m_adjoint);
323
324 svd.m_workMatrix = m_qr.matrixQR().block(0,0,matrix.rows(),matrix.rows()).template triangularView<Upper>().adjoint();
325 if(svd.m_computeFullV) m_qr.householderQ().evalTo(svd.m_matrixV, m_workspace);
326 else if(svd.m_computeThinV)
327 {
328 svd.m_matrixV.setIdentity(matrix.cols(), matrix.rows());
329 m_qr.householderQ().applyThisOnTheLeft(svd.m_matrixV, m_workspace);
330 }
331 if(svd.computeU()) svd.m_matrixU.setIdentity(matrix.rows(), matrix.rows());
332 return true;
333 }
334 else return false;
335 }
336
337private:
339 QRType m_qr;
342};
343
344/*** 2x2 SVD implementation
345 ***
346 *** JacobiSVD consists in performing a series of 2x2 SVD subproblems
347 ***/
348
349template<typename MatrixType, int QRPreconditioner>
351{
353 static void run(typename SVD::WorkMatrixType&, SVD&, Index, Index) {}
354};
355
356template<typename MatrixType, int QRPreconditioner>
358{
360 typedef typename MatrixType::Scalar Scalar;
361 typedef typename MatrixType::RealScalar RealScalar;
362 static void run(typename SVD::WorkMatrixType& work_matrix, SVD& svd, Index p, Index q)
363 {
364 using std::sqrt;
365 Scalar z;
367 RealScalar n = sqrt(numext::abs2(work_matrix.coeff(p,p)) + numext::abs2(work_matrix.coeff(q,p)));
368
369 if(n==0)
370 {
371 z = abs(work_matrix.coeff(p,q)) / work_matrix.coeff(p,q);
372 work_matrix.row(p) *= z;
373 if(svd.computeU()) svd.m_matrixU.col(p) *= conj(z);
374 if(work_matrix.coeff(q,q)!=Scalar(0))
376 z = abs(work_matrix.coeff(q,q)) / work_matrix.coeff(q,q);
377 work_matrix.row(q) *= z;
378 if(svd.computeU()) svd.m_matrixU.col(q) *= conj(z);
379 }
380 // otherwise the second row is already zero, so we have nothing to do.
381 }
382 else
383 {
384 rot.c() = conj(work_matrix.coeff(p,p)) / n;
385 rot.s() = work_matrix.coeff(q,p) / n;
386 work_matrix.applyOnTheLeft(p,q,rot);
387 if(svd.computeU()) svd.m_matrixU.applyOnTheRight(p,q,rot.adjoint());
388 if(work_matrix.coeff(p,q) != Scalar(0))
389 {
390 z = abs(work_matrix.coeff(p,q)) / work_matrix.coeff(p,q);
391 work_matrix.col(q) *= z;
392 if(svd.computeV()) svd.m_matrixV.col(q) *= z;
393 }
394 if(work_matrix.coeff(q,q) != Scalar(0))
395 {
396 z = abs(work_matrix.coeff(q,q)) / work_matrix.coeff(q,q);
397 work_matrix.row(q) *= z;
398 if(svd.computeU()) svd.m_matrixU.col(q) *= conj(z);
399 }
400 }
401 }
402};
403
404template<typename MatrixType, typename RealScalar, typename Index>
405void real_2x2_jacobi_svd(const MatrixType& matrix, Index p, Index q,
406 JacobiRotation<RealScalar> *j_left,
407 JacobiRotation<RealScalar> *j_right)
408{
409 using std::sqrt;
410 using std::abs;
412 m << numext::real(matrix.coeff(p,p)), numext::real(matrix.coeff(p,q)),
413 numext::real(matrix.coeff(q,p)), numext::real(matrix.coeff(q,q));
414 JacobiRotation<RealScalar> rot1;
415 RealScalar t = m.coeff(0,0) + m.coeff(1,1);
416 RealScalar d = m.coeff(1,0) - m.coeff(0,1);
417
418 if(d == RealScalar(0))
419 {
420 rot1.s() = RealScalar(0);
421 rot1.c() = RealScalar(1);
422 }
423 else
424 {
425 // If d!=0, then t/d cannot overflow because the magnitude of the
426 // entries forming d are not too small compared to the ones forming t.
427 RealScalar u = t / d;
428 RealScalar tmp = sqrt(RealScalar(1) + numext::abs2(u));
429 rot1.s() = RealScalar(1) / tmp;
430 rot1.c() = u / tmp;
431 }
432 m.applyOnTheLeft(0,1,rot1);
433 j_right->makeJacobi(m,0,1);
434 *j_left = rot1 * j_right->transpose();
435}
436
437template<typename _MatrixType, int QRPreconditioner>
438struct traits<JacobiSVD<_MatrixType,QRPreconditioner> >
439{
440 typedef _MatrixType MatrixType;
441};
442
443} // end namespace internal
444
498template<typename _MatrixType, int QRPreconditioner> class JacobiSVD
499 : public SVDBase<JacobiSVD<_MatrixType,QRPreconditioner> >
500{
501 typedef SVDBase<JacobiSVD> Base;
502 public:
503
504 typedef _MatrixType MatrixType;
505 typedef typename MatrixType::Scalar Scalar;
506 typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
507 enum {
508 RowsAtCompileTime = MatrixType::RowsAtCompileTime,
509 ColsAtCompileTime = MatrixType::ColsAtCompileTime,
510 DiagSizeAtCompileTime = EIGEN_SIZE_MIN_PREFER_DYNAMIC(RowsAtCompileTime,ColsAtCompileTime),
511 MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
512 MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime,
513 MaxDiagSizeAtCompileTime = EIGEN_SIZE_MIN_PREFER_FIXED(MaxRowsAtCompileTime,MaxColsAtCompileTime),
514 MatrixOptions = MatrixType::Options
515 };
516
517 typedef typename Base::MatrixUType MatrixUType;
518 typedef typename Base::MatrixVType MatrixVType;
520
523 typedef Matrix<Scalar, DiagSizeAtCompileTime, DiagSizeAtCompileTime,
524 MatrixOptions, MaxDiagSizeAtCompileTime, MaxDiagSizeAtCompileTime>
526
533 {}
534
535
542 JacobiSVD(Index rows, Index cols, unsigned int computationOptions = 0)
543 {
544 allocate(rows, cols, computationOptions);
545 }
546
557 explicit JacobiSVD(const MatrixType& matrix, unsigned int computationOptions = 0)
558 {
560 }
561
572 JacobiSVD& compute(const MatrixType& matrix, unsigned int computationOptions);
573
580 JacobiSVD& compute(const MatrixType& matrix)
581 {
582 return compute(matrix, m_computationOptions);
583 }
584
585 using Base::computeU;
586 using Base::computeV;
587 using Base::rows;
588 using Base::cols;
589 using Base::rank;
590
591 private:
592 void allocate(Index rows, Index cols, unsigned int computationOptions);
593
594 protected:
595 using Base::m_matrixU;
596 using Base::m_matrixV;
597 using Base::m_singularValues;
598 using Base::m_isInitialized;
599 using Base::m_isAllocated;
600 using Base::m_usePrescribedThreshold;
601 using Base::m_computeFullU;
602 using Base::m_computeThinU;
603 using Base::m_computeFullV;
604 using Base::m_computeThinV;
605 using Base::m_computationOptions;
606 using Base::m_nonzeroSingularValues;
607 using Base::m_rows;
608 using Base::m_cols;
609 using Base::m_diagSize;
610 using Base::m_prescribedThreshold;
611 WorkMatrixType m_workMatrix;
612
613 template<typename __MatrixType, int _QRPreconditioner, bool _IsComplex>
615 template<typename __MatrixType, int _QRPreconditioner, int _Case, bool _DoAnything>
617
620 MatrixType m_scaledMatrix;
621};
622
623template<typename MatrixType, int QRPreconditioner>
624void JacobiSVD<MatrixType, QRPreconditioner>::allocate(Index rows, Index cols, unsigned int computationOptions)
625{
626 eigen_assert(rows >= 0 && cols >= 0);
627
628 if (m_isAllocated &&
629 rows == m_rows &&
630 cols == m_cols &&
631 computationOptions == m_computationOptions)
632 {
633 return;
634 }
635
636 m_rows = rows;
637 m_cols = cols;
638 m_isInitialized = false;
639 m_isAllocated = true;
640 m_computationOptions = computationOptions;
641 m_computeFullU = (computationOptions & ComputeFullU) != 0;
642 m_computeThinU = (computationOptions & ComputeThinU) != 0;
643 m_computeFullV = (computationOptions & ComputeFullV) != 0;
644 m_computeThinV = (computationOptions & ComputeThinV) != 0;
645 eigen_assert(!(m_computeFullU && m_computeThinU) && "JacobiSVD: you can't ask for both full and thin U");
646 eigen_assert(!(m_computeFullV && m_computeThinV) && "JacobiSVD: you can't ask for both full and thin V");
647 eigen_assert(EIGEN_IMPLIES(m_computeThinU || m_computeThinV, MatrixType::ColsAtCompileTime==Dynamic) &&
648 "JacobiSVD: thin U and V are only available when your matrix has a dynamic number of columns.");
649 if (QRPreconditioner == FullPivHouseholderQRPreconditioner)
650 {
651 eigen_assert(!(m_computeThinU || m_computeThinV) &&
652 "JacobiSVD: can't compute thin U or thin V with the FullPivHouseholderQR preconditioner. "
653 "Use the ColPivHouseholderQR preconditioner instead.");
654 }
655 m_diagSize = (std::min)(m_rows, m_cols);
656 m_singularValues.resize(m_diagSize);
657 if(RowsAtCompileTime==Dynamic)
658 m_matrixU.resize(m_rows, m_computeFullU ? m_rows
659 : m_computeThinU ? m_diagSize
660 : 0);
661 if(ColsAtCompileTime==Dynamic)
662 m_matrixV.resize(m_cols, m_computeFullV ? m_cols
663 : m_computeThinV ? m_diagSize
664 : 0);
665 m_workMatrix.resize(m_diagSize, m_diagSize);
666
667 if(m_cols>m_rows) m_qr_precond_morecols.allocate(*this);
668 if(m_rows>m_cols) m_qr_precond_morerows.allocate(*this);
669 if(m_rows!=m_cols) m_scaledMatrix.resize(rows,cols);
670}
671
672template<typename MatrixType, int QRPreconditioner>
673JacobiSVD<MatrixType, QRPreconditioner>&
675{
676 using std::abs;
677 allocate(matrix.rows(), matrix.cols(), computationOptions);
678
679 // currently we stop when we reach precision 2*epsilon as the last bit of precision can require an unreasonable number of iterations,
680 // only worsening the precision of U and V as we accumulate more rotations
681 const RealScalar precision = RealScalar(2) * NumTraits<Scalar>::epsilon();
682
683 // limit for very small denormal numbers to be considered zero in order to avoid infinite loops (see bug 286)
684 // FIXME What about considerering any denormal numbers as zero, using:
685 // const RealScalar considerAsZero = (std::numeric_limits<RealScalar>::min)();
686 const RealScalar considerAsZero = RealScalar(2) * std::numeric_limits<RealScalar>::denorm_min();
687
688 // Scaling factor to reduce over/under-flows
689 RealScalar scale = matrix.cwiseAbs().maxCoeff();
690 if(scale==RealScalar(0)) scale = RealScalar(1);
691
692 /*** step 1. The R-SVD step: we use a QR decomposition to reduce to the case of a square matrix */
693
694 if(m_rows!=m_cols)
695 {
696 m_scaledMatrix = matrix / scale;
697 m_qr_precond_morecols.run(*this, m_scaledMatrix);
698 m_qr_precond_morerows.run(*this, m_scaledMatrix);
699 }
700 else
701 {
702 m_workMatrix = matrix.block(0,0,m_diagSize,m_diagSize) / scale;
703 if(m_computeFullU) m_matrixU.setIdentity(m_rows,m_rows);
704 if(m_computeThinU) m_matrixU.setIdentity(m_rows,m_diagSize);
705 if(m_computeFullV) m_matrixV.setIdentity(m_cols,m_cols);
706 if(m_computeThinV) m_matrixV.setIdentity(m_cols, m_diagSize);
707 }
708
709 /*** step 2. The main Jacobi SVD iteration. ***/
710
711 bool finished = false;
712 while(!finished)
713 {
714 finished = true;
715
716 // do a sweep: for all index pairs (p,q), perform SVD of the corresponding 2x2 sub-matrix
717
718 for(Index p = 1; p < m_diagSize; ++p)
719 {
720 for(Index q = 0; q < p; ++q)
721 {
722 // if this 2x2 sub-matrix is not diagonal already...
723 // notice that this comparison will evaluate to false if any NaN is involved, ensuring that NaN's don't
724 // keep us iterating forever. Similarly, small denormal numbers are considered zero.
725 RealScalar threshold = numext::maxi<RealScalar>(considerAsZero,
726 precision * numext::maxi<RealScalar>(abs(m_workMatrix.coeff(p,p)),
727 abs(m_workMatrix.coeff(q,q))));
728 // We compare both values to threshold instead of calling max to be robust to NaN (See bug 791)
729 if(abs(m_workMatrix.coeff(p,q))>threshold || abs(m_workMatrix.coeff(q,p)) > threshold)
730 {
731 finished = false;
732
733 // perform SVD decomposition of 2x2 sub-matrix corresponding to indices p,q to make it diagonal
736 internal::real_2x2_jacobi_svd(m_workMatrix, p, q, &j_left, &j_right);
737
738 // accumulate resulting Jacobi rotations
739 m_workMatrix.applyOnTheLeft(p,q,j_left);
740 if(computeU()) m_matrixU.applyOnTheRight(p,q,j_left.transpose());
741
742 m_workMatrix.applyOnTheRight(p,q,j_right);
743 if(computeV()) m_matrixV.applyOnTheRight(p,q,j_right);
744 }
745 }
746 }
747 }
748
749 /*** step 3. The work matrix is now diagonal, so ensure it's positive so its diagonal entries are the singular values ***/
750
751 for(Index i = 0; i < m_diagSize; ++i)
752 {
753 RealScalar a = abs(m_workMatrix.coeff(i,i));
754 m_singularValues.coeffRef(i) = a;
755 if(computeU() && (a!=RealScalar(0))) m_matrixU.col(i) *= m_workMatrix.coeff(i,i)/a;
756 }
757
758 m_singularValues *= scale;
759
760 /*** step 4. Sort singular values in descending order and compute the number of nonzero singular values ***/
761
762 m_nonzeroSingularValues = m_diagSize;
763 for(Index i = 0; i < m_diagSize; i++)
764 {
765 Index pos;
766 RealScalar maxRemainingSingularValue = m_singularValues.tail(m_diagSize-i).maxCoeff(&pos);
768 {
769 m_nonzeroSingularValues = i;
770 break;
771 }
772 if(pos)
773 {
774 pos += i;
775 std::swap(m_singularValues.coeffRef(i), m_singularValues.coeffRef(pos));
776 if(computeU()) m_matrixU.col(pos).swap(m_matrixU.col(i));
777 if(computeV()) m_matrixV.col(pos).swap(m_matrixV.col(i));
778 }
779 }
780
781 m_isInitialized = true;
782 return *this;
783}
784
785#ifndef __CUDACC__
793template<typename Derived>
799#endif // __CUDACC__
800
801} // end namespace Eigen
802
803#endif // EIGEN_JACOBISVD_H
Two-sided Jacobi SVD decomposition of a rectangular matrix.
Definition JacobiSVD.h:500
JacobiSVD & compute(const MatrixType &matrix)
Method performing the decomposition of given matrix using current options.
Definition JacobiSVD.h:580
JacobiSVD()
Default Constructor.
Definition JacobiSVD.h:532
JacobiSVD(Index rows, Index cols, unsigned int computationOptions=0)
Default Constructor with memory preallocation.
Definition JacobiSVD.h:542
JacobiSVD & compute(const MatrixType &matrix, unsigned int computationOptions)
Method performing the decomposition of given matrix using custom options.
Definition JacobiSVD.h:674
JacobiSVD(const MatrixType &matrix, unsigned int computationOptions=0)
Constructor performing the decomposition of given matrix.
Definition JacobiSVD.h:557
Base class for all dense matrices, vectors, and expressions.
Definition MatrixBase.h:50
Base class of SVD algorithms.
Definition SVDBase.h:49
Index rank() const
Definition SVDBase.h:130
bool computeV() const
Definition SVDBase.h:191
bool computeU() const
Definition SVDBase.h:189
Pseudo expression representing a solving operation.
Definition Solve.h:63
@ NoQRPreconditioner
Do not specify what is to be done if the SVD of a non-square matrix is asked for.
Definition Constants.h:415
@ HouseholderQRPreconditioner
Use a QR decomposition without pivoting as the first step.
Definition Constants.h:417
@ ColPivHouseholderQRPreconditioner
Use a QR decomposition with column pivoting as the first step.
Definition Constants.h:419
@ FullPivHouseholderQRPreconditioner
Use a QR decomposition with full pivoting as the first step.
Definition Constants.h:421
@ ComputeFullV
Used in JacobiSVD to indicate that the square matrix V is to be computed.
Definition Constants.h:387
@ ComputeThinV
Used in JacobiSVD to indicate that the thin matrix V is to be computed.
Definition Constants.h:389
@ ComputeFullU
Used in JacobiSVD to indicate that the square matrix U is to be computed.
Definition Constants.h:383
@ ComputeThinU
Used in JacobiSVD to indicate that the thin matrix U is to be computed.
Definition Constants.h:385
NLOHMANN_BASIC_JSON_TPL_DECLARATION void swap(nlohmann::NLOHMANN_BASIC_JSON_TPL &j1, nlohmann::NLOHMANN_BASIC_JSON_TPL &j2) noexcept(//NOLINT(readability-inconsistent-declaration-parameter-name, cert-dcl58-cpp) is_nothrow_move_constructible< nlohmann::NLOHMANN_BASIC_JSON_TPL >::value &&//NOLINT(misc-redundant-expression) is_nothrow_move_assignable< nlohmann::NLOHMANN_BASIC_JSON_TPL >::value)
exchanges the values of two JSON objects
Definition json.hpp:24418
Holds information about the various numeric (i.e.
Definition NumTraits.h:108
Definition ForwardDeclarations.h:17
Definition Meta.h:30
Definition inference.c:32